

Welcome to katdal’s documentation!

Contents:

	User guide
	Introduction to katdal

	Tuning your application

	Sign conventions

	Data set format reference
	MVF version 1 (Fringe Finder)

	MVF version 2 (KAT-7)

	MVF version 3 (early MeerKAT)

	MVF version 4 (MeerKAT)

	API reference
	katdal package

Indices and tables

	Index

	Module Index

	Search Page

User guide

Contents:

	Introduction to katdal
	Overview

	Quick Tutorial

	Tuning your application
	Chunking

	Joint loading

	Parallelism

	Selection

	Network versus local disk

	Benchmarking

	Sign conventions
	Visibilities

	Baseline coordinates

	Polarisation

Introduction to katdal

Data access library for data sets in the MeerKAT Visibility Format (MVF)

Overview

This module serves as a data access library to interact with the chunk stores
and HDF5 files produced by the MeerKAT radio telescope and its predecessors
(KAT-7 and Fringe Finder). It uses memory carefully, allowing data sets to be
inspected and partially loaded into memory. Data sets may be concatenated and
split via a flexible selection mechanism. In addition, it provides a script to
convert these data sets to CASA MeasurementSets.

Quick Tutorial

Open any data set through a single function to obtain a data set object:

import katdal
d = katdal.open('1234567890.h5')

This automatically determines the version and storage location of the data set.
The versions roughly map to the various instruments:

- v1 : Fringe Finder (HDF5 file)
- v2 : KAT-7 (HDF5 file)
- v3 : MeerKAT (HDF5 file)
- v4 : MeerKAT (chunk store based on objects in Ceph)

Multiple data sets (even of different versions) may also be concatenated
together (as long as they have the same dump rate):

d = katdal.open(['1234567890.h5', '1234567891.h5'])

Inspect the contents of the data set by printing the object:

print d

Here is a typical output:

===
Name: 1313067732.h5 (version 2.0)
===
Observer: someone Experiment ID: 2118d346-c41a-11e0-b2df-a4badb44fe9f
Description: 'Track on Hyd A,Vir A, 3C 286 and 3C 273'
Observed from 2011-08-11 15:02:14.072 SAST to 2011-08-11 15:19:47.810 SAST
Dump rate: 1.00025 Hz
Subarrays: 1
 ID Antennas Inputs Corrprods
 0 ant1,ant2,ant3,ant4,ant5,ant6,ant7 14 112
Spectral Windows: 1
 ID CentreFreq(MHz) Bandwidth(MHz) Channels ChannelWidth(kHz)
 0 1822.000 400.000 1024 390.625

Data selected according to the following criteria:
 subarray=0
 ants=['ant1', 'ant2', 'ant3', 'ant4', 'ant5', 'ant6', 'ant7']
 spw=0

Shape: (1054 dumps, 1024 channels, 112 correlation products) => Size: 967.049 MB
Antennas: *ant1,ant2,ant3,ant4,ant5,ant6,ant7 Inputs: 14 Autocorr: yes Crosscorr: yes
Channels: 1024 (index 0 - 1023, 2021.805 MHz - 1622.195 MHz), each 390.625 kHz wide
Targets: 4 selected out of 4 in catalogue
 ID Name Type RA(J2000) DEC(J2000) Tags Dumps ModelFlux(Jy)
 0 Hyd A radec 9:18:05.28 -12:05:48.9 333 33.63
 1 Vir A radec 12:30:49.42 12:23:28.0 251 166.50
 2 3C 286 radec 13:31:08.29 30:30:33.0 230 12.97
 3 3C 273 radec 12:29:06.70 2:03:08.6 240 39.96
Scans: 8 selected out of 8 total Compscans: 1 selected out of 1 total
 Date Timerange(UTC) ScanState CompScanLabel Dumps Target
 11-Aug-2011/13:02:14 - 13:04:26 0:slew 0: 133 0:Hyd A
 13:04:27 - 13:07:46 1:track 0: 200 0:Hyd A
 13:07:47 - 13:08:37 2:slew 0: 51 1:Vir A
 13:08:38 - 13:11:57 3:track 0: 200 1:Vir A
 13:11:58 - 13:12:27 4:slew 0: 30 2:3C 286
 13:12:28 - 13:15:47 5:track 0: 200 2:3C 286
 13:15:48 - 13:16:27 6:slew 0: 40 3:3C 273
 13:16:28 - 13:19:47 7:track 0: 200 3:3C 273

The first segment of the printout displays the static information of the data
set, including observer, dump rate and all the available subarrays and spectral
windows in the data set. The second segment (between the dashed lines) highlights
the active selection criteria. The last segment displays dynamic information
that is influenced by the selection, including the overall visibility array
shape, antennas, channel frequencies, targets and scan info.

The data set is built around the concept of a three-dimensional visibility array
with dimensions of time, frequency and correlation product. This is reflected in
the shape of the dataset:

d.shape

which returns (1054, 1024, 112), meaning 1054 dumps by 1024 channels by 112
correlation products.

Let’s select a subset of the data set:

d.select(scans='track', channels=slice(200,300), ants='ant4')
print d

This results in the following printout:

===
Name: /Users/schwardt/Downloads/1313067732.h5 (version 2.0)
===
Observer: siphelele Experiment ID: 2118d346-c41a-11e0-b2df-a4badb44fe9f
Description: 'track on Hyd A,Vir A, 3C 286 and 3C 273 for Lud'
Observed from 2011-08-11 15:02:14.072 SAST to 2011-08-11 15:19:47.810 SAST
Dump rate: 1.00025 Hz
Subarrays: 1
 ID Antennas Inputs Corrprods
 0 ant1,ant2,ant3,ant4,ant5,ant6,ant7 14 112
Spectral Windows: 1
 ID CentreFreq(MHz) Bandwidth(MHz) Channels ChannelWidth(kHz)
 0 1822.000 400.000 1024 390.625

Data selected according to the following criteria:
 channels=slice(200, 300, None)
 subarray=0
 scans='track'
 ants='ant4'
 spw=0

Shape: (800 dumps, 100 channels, 4 correlation products) => Size: 2.560 MB
Antennas: ant4 Inputs: 2 Autocorr: yes Crosscorr: no
Channels: 100 (index 200 - 299, 1943.680 MHz - 1905.008 MHz), each 390.625 kHz wide
Targets: 4 selected out of 4 in catalogue
 ID Name Type RA(J2000) DEC(J2000) Tags Dumps ModelFlux(Jy)
 0 Hyd A radec 9:18:05.28 -12:05:48.9 200 31.83
 1 Vir A radec 12:30:49.42 12:23:28.0 200 159.06
 2 3C 286 radec 13:31:08.29 30:30:33.0 200 12.61
 3 3C 273 radec 12:29:06.70 2:03:08.6 200 39.32
Scans: 4 selected out of 8 total Compscans: 1 selected out of 1 total
 Date Timerange(UTC) ScanState CompScanLabel Dumps Target
 11-Aug-2011/13:04:27 - 13:07:46 1:track 0: 200 0:Hyd A
 13:08:38 - 13:11:57 3:track 0: 200 1:Vir A
 13:12:28 - 13:15:47 5:track 0: 200 2:3C 286
 13:16:28 - 13:19:47 7:track 0: 200 3:3C 273

Compared to the first printout, the static information has remained the same
while the dynamic information now reflects the selected subset. There are many
possible selection criteria, as illustrated below:

d.select(timerange=('2011-08-11 13:10:00', '2011-08-11 13:15:00'), targets=[1, 2])
d.select(spw=0, subarray=0)
d.select(ants='ant1,ant2', pol='H', scans=(0,1,2), freqrange=(1700e6, 1800e6))

See the docstring of DataSet.select() for more detailed information (i.e.
do d.select? in IPython). Take note that only one subarray and one spectral
window must be selected.

Once a subset of the data has been selected, you can access the data and
timestamps on the data set object:

vis = d.vis[:]
timestamps = d.timestamps[:]

Note the [:] indexing, as the vis and timestamps properties are special
LazyIndexer objects that only give you the actual data when you use
indexing, in order not to inadvertently load the entire array into memory.

For the example dataset and no selection the vis array will have a shape of
(1054, 1024, 112). The time dimension is labelled by d.timestamps, the
frequency dimension by d.channel_freqs and the correlation product dimension
by d.corr_products.

Another key concept in the data set object is that of sensors. These are named
time series of arbritrary data that are either loaded from the data set
(actual sensors) or calculated on the fly (virtual sensors). Both variants
are accessed through the sensor cache (available as d.sensor) and cached
there after the first access. The data set object also provides convenient
properties to expose commonly-used sensors, as shown in the plot example below:

import matplotlib.pyplot as plt
plt.plot(d.az, d.el, 'o')
plt.xlabel('Azimuth (degrees)')
plt.ylabel('Elevation (degrees)')

Other useful attributes include ra, dec, lst, mjd, u, v, w,
target_x and target_y. These are all one-dimensional NumPy arrays that
dynamically change length depending on the active selection.

As in katdal’s predecessor (scape) there is a DataSet.scans() generator
that allows you to step through the scans in the data set. It returns the
scan index, scan state and target object on each iteration, and updates
the active selection on the data set to include only the current scan.
It is also possible to iterate through the compound scans with the
DataSet.compscans() generator, which yields the compound scan index, label
and first target on each iteration for convenience. These two iterators may also
be used together to traverse the data set structure:

for compscan, label, target in d.compscans():
 plt.figure()
 for scan, state, target in d.scans():
 if state in ('scan', 'track'):
 plt.plot(d.ra, d.dec, 'o')
 plt.xlabel('Right ascension (J2000 degrees)')
 plt.ylabel('Declination (J2000 degrees)')
 plt.title(target.name)

Finally, all the targets (or fields) in the data set are stored in a catalogue
available at d.catalogue, and the original HDF5 file is still accessible via
a back door installed at d.file in the case of a single-file data set.

Tuning your application

It is possible to load data at high bandwidth using katdal: rates over
2.5 GB/s have been seen when loading from a local disk. However, it
requires an understanding of the storage layout and choice of an
appropriate access pattern.

This chapter is aimed at loading MVF version 4 (MeerKAT) data, as older versions
typically contain far less data. Some of the advice is generic but some
of the methods described here will not work on older data sets.

Chunking

The most important thing to understand is that the data is split into
chunks, each of which are stored as a file on disk or an object in an S3
store. Retrieving any element of a chunk causes the entire chunk to be
retrieved. Thus, aligning accesses to whole chunks will give the best
performance, as data is not discarded.

As an illustration, consider an application that has an outer loop over
the baselines, and loads data for one baseline at a time. Chunks
typically span all baselines, so each time one baseline is loaded,
katdal will actually load the entire data set. If the application can
be redesigned to fetch data for a small time range for all baselines it
will perform much better.

When using MVFv4, katdal uses dask [https://docs.dask.org/] to manage the chunking. After
opening a data set, you can determine the chunking for a particular
array by examining its dataset member:

>>> d.vis.dataset
dask.array<1556179171-sdp, shape=(38, 4096, 40), dtype=complex64, chunksize=(32, 1024, 40)>
>>> d.vis.dataset.chunks
((32, 6), (1024, 1024, 1024, 1024), (40,))

For this data set, it will be optimal to load visibilities in 32 × 1024
× 40 element pieces.

Note that the chunking scheme may be different for visibilities, flags
and weights.

Joint loading

The values returned by katdal are not the raw values stored in the
chunks: there is processing involved, such as application of calibration
solutions and flagging of missing data. Some of this processing is
common between visibilities, flags and weights. It’s thus more efficient
to load the visibilities, flags and weights as a single operation rather
than as three separate operations.

This can be achieved using DaskLazyIndexer.get(). For example,
replace

vis = d.vis[idx]
flags = d.flags[idx]
weights = d.weights[idx]

with

vis, flags, weights = DaskLazyIndexer.get([d.vis, d.flags, d.weights], idx)

Parallelism

Dask uses multiple worker threads. It defaults to one thread per CPU
core, but for I/O-bound tasks this is often not enough to achieve
maximum throughput. Refer to the dask scheduler [https://docs.dask.org/en/latest/scheduling.html] documentation for
details of how to configure the number of workers.

More workers only helps if there is enough parallel work to be
performed, which means there need to be at least as many chunks loaded
at a time as there are workers (and preferably many more). It’s thus
advisable to load as much data at a time as possible without running out
of memory.

Selection

Using DataSet.select() is relatively expensive. For the best
performance, it should only be used occasionally (for example, to filter
out unwanted data at the start), with array access notation or
DaskLazyIndexer.get() used to break up large data sets into
manageable pieces.

Dask also performs better with selections that select contiguous data.
You might be able to get a little more performance by using
DataSet.scans() (which will yield a series of contiguous
selections) rather than using select() with
scans='track'.

When using MVF v4 one can also pass a preselect parameter to katdal.open()
which allows slicing a subset of the data (time and frequency). It is more
limited than DataSet.select() (it can only select contiguous ranges, and
can only specify the selection in terms of channels and dumps), but if a script
is only interested in working on a subset of data, this method can be more
efficient and uses less memory.

Network versus local disk

When loading data from the network, latency is typically higher, and so
more workers will be needed to achieve peak throughput. Network access
is also more sensitive to access patterns that are mis-aligned with
chunks, because chunks are not cached in memory by the operation system
and hence must be re-fetched over the network if they are accessed
again.

Benchmarking

To assist with testing out the effects of changing these tuning
parameters, the katdal source code includes a script called
mvf_read_benchmark.py that allows a data set to be loaded in
various ways and reports the average throughput. The command-line
options are somewhat limited so you may need to edit it yourself, for
example, to add a custom selection.

Sign conventions

Visibilities

For a wave with frequency \(\omega\) and wave number \(k\), the
phasor is

\[e^{(\omega t - kz)i}\]

Visibilities are then \(e_1 \overline{e_2}\).

In KAT-7, the opposite sign convention is used in the HDF5 files, but katdal
conjugates the visibilities to match MeerKAT.

Baseline coordinates

The UVW coordinates for the baseline (A, B) are
\((u, v, w)_A - (u, v, w)_B\). Combined with the above, this means
that ideal visibilities (ignoring any effects apart from geometric
delay) are

\[V(u, v, w) = \int \frac{I(l, m)}{n} e^{2\pi i(ul + vm + w(n - 1))}\ dl\ dm\]

Polarisation

KAT-7 and MeerKAT are linear feed systems. On MeerKAT, if one points
one’s right thumb in the direction of vertical polarisation and the
right index finger in the direction of horizontal polarisation, then the
right middle finger points from the antenna towards the source.

When exporting to a Measurement Set, katdal maps H to (IEEE) x and V to
y, and introduces a 90° offset to the parallactic angle rotation.

KAT-7 has the opposite convention for polarisation (due to the lack of a
sub-reflector). katdal does not make any effort to compensate for
this. Measurement sets exported from KAT-7 data should thus not be used
for polarimetry without further correction.

Data set format reference

In most cases uses should not need to know the details of the data set formats,
because katdal exists to hide these details and present a consistent,
user-friendly view. It also contains workarounds for known issues in older data
sets (which are not documented here). This is reference documentation useful to
katdal developers and to power users who need to extract information not
presented by the katdal interface.

Contents:

	MVF version 1 (Fringe Finder)

	MVF version 2 (KAT-7)

	MVF version 3 (early MeerKAT)

	MVF version 4 (MeerKAT)

MVF version 1 (Fringe Finder)

Last updated: 9 March 2010

This documents the HDF5 file format as written by augment version 4. Also indicated by
(**) are those parts of the data file used by the scape package, which
handles single-dish- or single baseline back-end processing for the Fringe Finder.
HDF5 files contain a hierarchical structure inside, with groups connected as
nodes in a directed graph. Each group may contain datasets (multi-dimensional arrays) and
attributes (metadata such as strings and smaller arrays). More information on
these concepts can be found on the HDF5 website [http://www.hdfgroup.org/HDF5].
The format currently calls for a single HDF5 file per experiment, but this may
change in future.

The hierarchical structure of a typical data set, with levels ‘Experiment’ ->
‘Compound Scan’ -> ‘Scan’, is reflected in the HDF5 group structure. The root ‘/’
group of the file represents the ‘Experiment’ level and contains the groups ‘Antennas’,
‘Correlator’, ‘Scans’. In addition, the root ‘/’ group the augment log dataset.

The ‘Antennas’ group contains a group for each physical antenna, named ‘Antenna%d’,
where %d should be replaced by the one-based physical antenna number.

The ‘Scans’ group contains a group for each compound scan, named
‘CompoundScan%d’, where %d should be replaced by the zero-based compound scan
index integer. Each ‘CompoundScan%d’ group contains a group for each scan, named
‘Scan%d’, where %d should be replaced by the zero-based scan index integer. The
group structure of a typical dataset is shown below:

/
/Antennas
/Antennas/Antenna1
/Antennas/Antenna1/H
/Antennas/Antenna1/V
/Antennas/Antenna1/Sensors
/Antennas/Antenna2
/Antennas/Antenna2/H
/Antennas/Antenna2/V
/Antennas/Antenna2/Sensors
/Correlator
/Scans
/Scans/CompoundScan0
/Scans/CompoundScan0/Scan0
/Scans/CompoundScan0/Scan1
/Scans/CompoundScan0/Scan2
/Scans/CompoundScan1
/Scans/CompoundScan1/Scan0
/Scans/CompoundScan1/Scan1
/Scans/CompoundScan1/Scan2

The following sections list the data entries in each group. Four fields describe
each entry: its name, D or A for whether it is an HDF5 dataset or attribute,
and its data type, separated by colons and followed by a general description on
the next line.

The root ‘/’ group

_ experiment_id : A : string

The ID for this experiment (usually a UUID generated by the system at observe time).

_ observer : A : string

The observer who ran the experiment. Data files are copied into the archive using
the observer as part of the file hierarchy.

_ description : A : string

Description of the experiment as specified by the observer at observe time.

_ k7w_file_version : A : integer, optional

Version of the k7writer program used to generate the raw data file

_ data_unit : A : string, one of {‘counts’, ‘K’, ‘Jy’}

Power unit recorded in the scans, typically ‘counts’ for uncalibrated correlator
output or ‘K’ for Tsys-corrected data.

	data_timestamps_at_sample_centers : A : bool

Boolean flag indicating whether data timestamps are aligned with the center (if True or 1)
or the start (if False or 0) of each sample / integration period.

	augment_version : A : string, optional

String added by augmenter, indicating the version of the augmented data format.

	augment : A : string

String added by augmenter, indicating when the file was augmented.
If this attribute is absent, the file contains unaugmented correlator data only and
cannot be loaded by scape.

_ augment_log : D : record array, optional, of shape (N,2) with record:

{'section' : string, 'message' : string}

The augment program log ouput from the augmentation of this HDF5 file.

/Antennas

This has no additional attributes or datasets.

/Antennas/Antenna%d

_ description : A : string

Description string of antenna, used by katpoint [https://katpoint.readthedocs.io/en/latest/katpoint.html#module-katpoint] package to construct
katpoint.Antenna object via katpoint.construct_antenna().
The string includes antenna name, location, size, etc.

/Antennas/Antenna%d/H

_ dbe_input : A : string

DBE input mapping for the H channel.

_ delay_s : A : float64 (???)

Cable delay in seconds for the H channel.

_ coupler_nd_model : D : float64 array of shape (N,2) ???

Table containing N frequencies in Hz in the first column and measured
temperatures in K in the second column

_ pin_nd_model : D : float64 array of shape (N,2) ???

Table containing N frequencies in Hz in the first column and measured
temperatures in K in the second column

/Antennas/Antenna%d/V

_ dbe_input : A : string

DBE input mapping for the V channel.

_ delay_s : A : float64 (???)

Cable delay in seconds for the V channel.

_ coupler_nd_model : D : float64 array of shape (N,2) ???

Table containing N frequencies in Hz in the first column and measured
temperatures in K in the second column

_ pin_nd_model : D : float64 array of shape (N,2) ???

Table containing N frequencies in Hz in the first column and measured
temperatures in K in the second column

/Antennas/Antenna%d/Sensors

This is comprised of a set of record arrays, each corresponding to sensors on the telescope.
Each record array has 4 attributes: name, description, units, type (??? indicate here which
items are optional for scape):

_ name : A : string

The katcp name of the sensor.

_ description : A : string, optional

Human understandable (hopefully) description of sensor.

_ units : A : string, optional

The units for the sensor readings. Currently scape does not take any notice of these
attributes and assumes ‘standard’ units for the sensors.

_ type : A : string, optional???

Data type for the sensor readings.

The set of record arrays (all optional for scape ???) is as below and may be missing
if no sensor data was recorded during the collection of the correlator data (???). The
‘status’ field for each is the sensor status recorded along with the sensor data. This
could be ‘nominal’, ‘warn’ (sensor in warning range), ‘error’ (sensor in error range),
‘failure’ (comms error to sensor), ‘unknown’ (no initial value yet). Currently, scape
does not take any notice of these sensor statuses (???).

	enviro_air_pressure : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Environmental measurements of air pressure at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The air pressure is assumed by scape to be in mbar.
The status is the sensor status as described above.

	enviro_air_relative_humidity : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Environmental measurements of air relative humidity at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The humidity is assumed by scape to be a percentage.
The status is the sensor status as described above.

	enviro_air_temperature : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Environmental measurements of air temperature at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The air temperature is assumed by scape to be in deg C.
The status is the sensor status as described above.

	enviro_wind_direction : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Environmental measurements of wind direction at arbitrary time instants,
where N is the number of wind data records. The timestamps are UTC seconds since
the Unix epoch. The wind direction is assumed by scape
to be in degrees increasing clockwise from North.
The status is the sensor status as described above.

	enviro_wind_speed : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Environmental measurements of wind speed at arbitrary time instants,
where N is the number of wind data records. The timestamps are UTC seconds since
the Unix epoch. The wind speed is assumed by scape to be in metres per second.
The status is the sensor status as described above.

	pos_actual_pointm_azim : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Measurements of actual azimuth after pointing model at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The azimuth values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_actual_pointm_elev : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Measurements of actual elevation after pointing model at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The elevation values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_actual_refrac_azim : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Measurements of actual azimuth after refraction correction at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The azimuth values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_actual_refrac_elev : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Measurements of actual elevation after refraction correction at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The elevation values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_actual_scan_azim : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Measurements of actual azimuth after scan offset at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The azimuth values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_actual_scan_elev : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Measurements of actual elevation after scan offset at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The elevation values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_request_pointm_azim : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Requested azimuth after pointing model at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The azimuth values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_request_pointm_elev : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Requested elevation after pointing model at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The elevation values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_request_refrac_azim : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Requested azimuth after refraction correction at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The azimuth values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_request_refrac_elev : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Requested elevation after refraction correction at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The elevation values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_request_scan_azim : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Requested azimuth after scan offset at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The azimuth values is assumed by scape to be in deg.
The status is the sensor status as described above.

	pos_request_scan_elev : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : float32, 'status' : string}

Requested elevation after scan offset at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The elevation values is assumed by scape to be in deg.
The status is the sensor status as described above.

	rfe3_rfe15_noise_coupler_on : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : string, 'status' : string}

Coupler noise diode firing flag at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The values are boolean wrapped in strings (‘0’ for off
or ‘1’ for on).
The status is the sensor status as described above.

	rfe3_rfe15_noise_pin_on : D : record array of shape (N,3), with record:

{'timestamp' : float64, 'value' : string, 'status' : string}

Pin noise diode firing flag at arbitrary time instants,
where N is the number of data records. The timestamps are UTC seconds since
the Unix epoch. The values are boolean wrapped in strings (‘0’ for off
or ‘1’ for on).
The status is the sensor status as described above.

/Correlator

_ instrument_type : A : integer, optional

Correlator instrument type as per DBE.

_ instance_id : A : integer, optional

Correlator instance id as per DBE.

_ channel_bandwidth_hz : A : uint64, optional???

The width of each frequency channel in the scan data in Hz.

_ adc_sample_rate : A : uint64, optional???

ADC sample rate in Hz.

_ accum_per_int : A : uint64, optional???

Number of FFT frames (polyphase filterbank output samples) per integration.
This is the number of samples from the output of each PFB channel that are
multiplied together and accumulated in the correlator to form a single
visibility sample.

_ num_freq_channels : A : uint64, optional???

Number of frequency channels contained in the scan data.

_ dump_rate_hz : A : float64

Correlator dump rate, in Hz. This should satisfy:

dump_rate = adc_sample_rate / (2 * num_freq_channels * accum_per_int)

_ center_frequency_hz : A : float32???, optional

Center frequency of the scan data in Hz.

_ channel_select : D : bool array of shape (F)

Array of boolean values, indicating which channels should be processed.
F is the number of frequency channels.

_ input_map : D : record array of shape (N,2) with record:

 {'correlator_product_id' : integer, 'dbe_inputs' : string}

This is used, combined with the /Antennas/Antenna%d/H/dbe_input or
/Antennas/Antenna%d/V/dbe_input attribute to map the physical antenna
H or V channel to the DBE input used then through to the correlator output.
N is the number of correlation products.

/Scans

This has no additional attributes or datasets.

/Scans/CompoundScan%d

_ label : A : string

A label for this compound scan.

_ target : A : string

Description string of target, used by katpoint [https://katpoint.readthedocs.io/en/latest/katpoint.html#module-katpoint] package to construct
katpoint.Target object via katpoint.construct_target().

	pointing_model : D : float32 array of shape (22,)

Pointing model used during experiment.

CorrelatorConfig

	center_freqs : D : float64 array of shape (F,), optional

Center frequency of each channel, in Hz, where F is the number of channels.
This is the main specification for center frequencies. If this dataset is
not present, the center frequencies are assumed to be regularly spaced and
calculated from the center_frequency_hz, bandwidth_hz and num_freq_channels
attributes of this group, which must be present in this case.

	bandwidths : D : float64 array of shape (F,), optional

Bandwidth of each channel, in Hz, where F is the number of channels. This is
the main specification for channel bandwidths. If this dataset is not present,
the bandwidths are all set to the bandwidth_hz attribute, which must be
present in this case.

	center_frequency_hz : A : uint64, optional

Center frequency of entire spectral band encompassing all channels. This is
used to calculate channel center frequencies in the absence of the
center_freqs dataset.

	channel_bandwidth_hz : A : uint64, optional

Bandwidth of each channel. This is used as channel bandwidths in the absence
of the bandwidths dataset.

	num_freq_channels : A : uint64, optional

Number of channels.

	adc_sample_rate : A : uint64, optional

ADC sample rate, in Hz.

Scan%d

	data : D : record array of shape (T, F), with record:

{'AxBx' : {'r' : float32, 'i' : float32}, 'AyBy' : {'r' : float32, 'i' : float32},
 'AxBy' : {'r' : float32, 'i' : float32}, 'AyBx' : {'r' : float32, 'i' : float32}}

The record structure is compatible with the NumPy dtype:

[('AxBx', complex64), ('AyBy', complex64), ('AxBy', complex64), ('AyBx', complex64)]

Correlation data for a single baseline between antennas A and B (specified
by antenna and antenna2, respectively), involving the x and y DBE inputs
for each antenna (typically mapping to the H and V feeds, respectively). If
antennas A and B correspond to the DBE antennas 0 and 1, respectively, the
term ‘AxBy’ would refer to the correlation between the 0x and 1y DBE input
signals. For a single dish, antennas A and B refer to the same antenna.
Each correlation datum consists of a real (‘r’) and imaginary (‘i’) part,
specified as 32-bit floats. The array has T rows and F columns, where T
is the number of time samples in the scan and F is the number of frequency
channels in the data set. The data has been scaled by accum_per_int, the
number of samples that have been integrated into a single visibility.

	timestamps : D : uint64 or float64 array of shape (T,)

Timestamps of the start of each sample in number of UTC milliseconds since
the Unix epoch, which is the native format of the DBE. T is the number of
time samples in the scan. If data_timestamps_at_sample_centers is True,
the timestamps are aligned with the middle of each sample period instead.

	pointing : D : record array of shape (T,), optional, with record:

{'az' : float32, 'el' : float32}

Pointing information, consisting of azimuth and elevation values per time
sample, where T is the number of time samples in the scan. All angles are
in degrees. The elevation should be between -90 and 90 degrees, while azimuth
has no restrictions, but is nominally between -180 and 180 degrees. If this
dataset is present, the original pointing information has been processed by
selecting a specific sensor and interpolating its measured values to coincide
with the correlator data timestamps (timestamps). For interferometric data,
this is the pointing data of the first antenna.

	requested_pointing : D : record array of shape (Tp,), optional, with record:

{'timestamp' : float64,
 'request_scan_azim' : float32, 'request_scan_elev' : float32,
 'request_refrac_azim' : float32, 'request_refrac_elev' : float32,
 'request_pointm_azim' : float32, 'request_pointm_elev' : float32}

The requested / predicted / commanded target position at various points in the
coordinate conversion chain, at arbitrary time instants. The timestamps are
UTC seconds since the Unix epoch. The rest of the field names are the names of
the corresponding Fringe Finder sensors. These fields contain azimuth and
elevation values per time sample, where Tp is the number of pointing data
records. All angles are in degrees. The elevation should be between -90 and 90
degrees, while azimuth has no restrictions, but is nominally between -180 and
180 degrees. The scan fields represent the highest level, obtained at the
input of the refraction correction step, while the refrac fields are
obtained at the output of this step. The pointm fields represent the lowest
level, obtained at the output of the pointing model correction step. This
dataset may be missing if no new pointing info was recorded during the
collection of the correlator data. For interferometric data, this is the
pointing data of the first antenna.

	actual_pointing : D : record array of shape (Tp,), optional, with record:

{'timestamp' : float64,
 'actual_scan_azim' : float32, 'actual_scan_elev' : float32,
 'actual_refrac_azim' : float32, 'actual_refrac_elev' : float32,
 'actual_pointm_azim' : float32, 'actual_pointm_elev' : float32}

The actual / measured target position at various points in the coordinate
conversion chain, at arbitrary time instants. The timestamps are UTC seconds
since the Unix epoch. The rest of the field names are the names of the
corresponding Fringe Finder sensors. These fields contain azimuth and
elevation values per time sample, where Tp is the number of pointing data
records. All angles are in degrees. The elevation should be between -90 and 90
degrees, while azimuth has no restrictions, but is nominally between -180 and
180 degrees. The pointm fields represent the lowest level, obtained at the
input of the reverse pointing model correction step, while the refrac fields
are obtained at the output of this step. The scan fields represent the
highest level, obtained at the output of the reverse refraction correction
step. This dataset may be missing if no new pointing info was recorded during
the collection of the correlator data. For interferometric data, this is the
pointing data of the first antenna.

	flags : D : record array of shape (T,), with record:

{'valid' : bool, 'nd_on' : bool}

Flags per time sample, where T is the number of time samples in the scan.

	enviro_ambient : D : record array of shape (Ta,), optional, with record:

{'timestamp' : float64,
 'temperature' : float32, 'pressure' : float32, 'humidity' : float32}

Slowly-varying (‘ambient’) environmental measurements at arbitrary time
instants, where Ta is the number of ambient environment data records. The
timestamps are UTC seconds since the Unix epoch. The ambient temperature is in
degrees Celsius, the atmospheric pressure is in hPa and the relative humidity
is a percentage. This dataset may be missing if no new ambient environment
info was recorded during the collection of the correlator data.

	enviro_wind : D : record array of shape (Tw,), optional, with record:

{'timestamp' : float64, 'wind_speed' : float32, 'wind_direction' : float32}

Environmental measurements of wind speed and direction (which typically vary
faster than the ambient data) at arbitrary time instants, where Tw is the
number of wind data records. The timestamps are UTC seconds since the Unix
epoch. The wind speed is in metres per second, and the wind direction is in
degrees increasing clockwise from North. This dataset may be missing if no new
wind environment info was recorded during the collection of the correlator
data.

	label : A : string

String that can be used to identify the type of scan in the back-end scripts.
Typical contents are ‘scan’ to indicate a normal scan, ‘slew’ to indicate the
telescope moving to the start of the next scan, and ‘cal’ to indicate a noise
diode firing. These suggestions are not enforced or checked by the scape
package, however.

	comment : A : string

Generic comment added to scan.

MVF version 2 (KAT-7)

Introduction

With the introduction of the KAT-7 correlator, we have taken the opportunity to revisit the correlator data storage format. This document describes this updated format.

Basic Concept

A single HDF5 corresponds to a single observation (contiguous telescope time segment for a specified subarray).

At highest level split into Data and MetaData.

MetaData contains two distinct types:

	Configuration is known a priori and is static for the duration of the observation.

	Sensors contains dynamic information provided in the form of katcp sensors. Typically only full known post observation.

Flags and History are special cases objects that get populated during run time but not from sensors. These are also the only groups that could get updated post augmentation.

Some datasets such as the noise_diode flags are synthesised from sensor information post capture. These base sensors could then be removed if space is a concern.

A major/minor version number is included in the file. The major indicates the overall structural philosophy (this document describes version 2.x). The minor is used
to identify the mandtory members of the MetaData and Markup groups included in the file. This allows addition of members (and modification of existing members) to the required list without wholesale changes to the file structure. The mandatory members are described in the following document: TBA.

If used to store voltage data then both correlator_data and timestamps are omitted as timing is synthesized on the fly.

Nut - number of correlator timeslots in this observation
Nt - number of averaged time timeslots
Nuf - number of correlator frequency channels
Nf - number of averaged frequency channels
Nbl - number of baselines
Np - number of polarisation products
Na - number of antennas in a given subarray
AntennaK - first antenna in a given subarray
AntennaN - last antenna in a given subarray

HDF5 Format

The structural format is shown below.

Groups are named using CamelCase, datasets are all lower case with underscores.
Attributes are indicated next to a group in {}:

/ {augment_ts}
 {experiment_id}
 {version}

/Data/ {ts_of_first_timeslot}
 /correlator_data - (Nt,Nf,Nbl,2) array of float32 visibilities (real and imag components)
 /timestamps - (Nt) array of float64 timestamps (UT seconds since Unix epoch)
 /voltage_data - (optional) (Na, Nt, Nf) array of 8bit voltage samples

/MetaData/
 /Configuration/
 /Antennas/ {num_antennas, subarray_id}
 /AntennaK..N/ {description, delays, diameter, location, etc...}
 / beam_pattern
 / h_coupler_noise_diode_model
 / h_pin_noise_diode_model
 / v_coupler_noide_diode_model
 / v_pin_noise_diode_model
 /Correlator/ {num_channels, center_freq, channel_bw, etc...}
 /Observation/ {type, pi, contact, sw_build_versions, etc...}
 /PostProcessing/ {channel_averaging, rfi_threshold, etc...}
 /time_averaging - TBD detail of baseline dep time avg
 /Sensors/
 /Antennas/ {num_antennas, subarray_id}
 /AntennaK..N/
 /... - dataset per antenna and pedestal sensor
 /DBE/
 /... - dataset per DBE sensor
 /Enviro/
 /... - dataset per enviro sensor
 /Other/
 /... - dataset per other sensor
 /RFE/
 /... - dataset per RFE sensor
 /Source/
 /phase_center
 /antenna_target - array of target sensors for each antenna

/Markup/
 /dropped_data - (optional) describes data dropped by receivers
 /flags - (Nt,Nf,Nbl) post averaged uint8 flags - 1bit per flag, packed
 /flags_description - (Nflags,3) index, name and description for each packed flag type
 /flags_full - (optional) (Nut,Nuf,Nbl) pre-averaged uint8 flags - 1bit per flag, packed
 /labels - (optional) descriptions of intent of each observational phase (e.g. scan, slew, cal, etc..)
 /noise_diode - (Nt,Na) noise diode state during this averaged timeslot
 /noise_diode_full - (optional) (Nut,Na) noise diode state per correlator timeslot
 /weights - (Nt,Nf,Nbl,Nweights) weights for each sample

/History/
 /augment_log - Log output of augmentation process
 /script_log - Log output of observation script

MVF version 3 (early MeerKAT)

The version 3 format is an evolution of the v2 format, and continues to
use HDF5 as the underlying format. It was used for early engineering and
commissioning of MeerKAT, but replaced by v4 before science operations
started.

At present there is no detailed documentation.

MVF version 4 (MeerKAT)

The version 4 format is the standard format for MeerKAT visibility data.
Unlike previous versions, the data for an observation does not reside in
a single HDF5 file, as such files would be unmanageably large. Instead,
the data is split into chunks, each in its own file, which are loaded
from disk or the network on demand. For this reason, the term “data set”
is preferred over “file”.

Concepts

	Streams

	A stream is a collection of data and any associated metadata, whether
multicast, queriable (e.g., sensors) or stored on disk. Every stream in
a subarray product has a unique name and a type. A stream may
consist of multiple items of related data e.g., visibilities, flags
and weights may form a single stream.

	Subarray product

	A collection of streams in the MeerKAT Science Data Processor (SDP)
forms a subarray product.

	Capture block

	A capture block is a contiguous period over which data is captured from
a specific subarray product. A subarray product can only capture one
capture block at a time.

Each visibility belongs to a specific stream and capture block
within a subarray product.

Capture block IDs are currently numbers representing the start time
in the UNIX epoch, but they should be treated as opaque strings.

	Chunk store

	A location (such as a local disk or the MeerKAT archive) that stores
the data from a capture block.

Metadata

The metadata for a data set is stored in a Redis [http://redis.io/] dump file
(extension .rdb), which is exported by
katsdptelstate [https://katsdptelstate.readthedocs.io/en/latest/index.html]. Refer to
katsdptelstate [https://katsdptelstate.readthedocs.io/en/latest/index.html] for details of how
attributes and sensors are encoded in the Redis database.

A single .rdb file contains metadata for a single subarray but
potentially for multiple streams and capture blocks. The default capture
block and stream to access are stored in capture_block_id and
stream_name.

Keys are stored in one of the following namespaces:

	the global namespace

	stream_name (the “stream namespace”)

	capture_block_id (the “capture-block namespace”)

	capture_block_id.stream_name (the “capture-stream namespace”)

Here . is used to indicate a sub-namespace, but the actual separator
is subject to change and one should always use
join() to
construct compound namespace names.

Keys may move between these namespaces without notice. Readers should
search for keys from the most specific to the least specific appropriate
namespace (see for example
katdal.datasources.view_capture_stream()).

Where values contain strings, they might contain either raw bytes (which
should be decoded as UTF-8) or Unicode text. Readers should be prepared
to accept either. The goal is to eventually migrate all such fields to
use text. katdal recursively converts all strings to the Python interpreter’s
native string type.

katsdptelstate [https://katsdptelstate.readthedocs.io/en/latest/index.html] stores two types of values:
immutable “attributes”, and “sensors” which are lists of timestamped
values. In the documentation below, most keys contain attributes, and
sensors are indicated.

Global metadata

A subset of the sensors in the MeerKAT system are stored in the file, in
the global namespace. Documenting the MeerKAT sensors is beyond the
scope of this documentation.

The following keys are also stored.

	sdp_config (dict)

	The JSON object used to configure the SDP subarray product. It is
not intended to be parsed (the relevant information is intended to
be available via other means), but it contains a wealth of
debugging information about the streams and connections between
them.

	sdp_capture_block_id (string) — sensor

	All capture block IDs seen so far. This should not be confused with
capture_block_id, which indicates the default capture block ID
that should be consulted when the file is opened without specifying
a capture block ID.

	sdp_image_tag (string)

	The Docker image tag for the Docker images forming the realtime SDP
capture system. This is the closest thing to a “version number” for
the implementation.

	sdp_image_overrides (dict)

	Alternative Docker image tags for specific services within SDP,
overriding sdp_image_tag. Overriding individual images is a
debugging tool and it should always be empty for science
observations.

	config.* (dict)

	Command-line options passed to each of the services within SDP.

	sdp_task_details (dict)

	Debug information about each of the services launched for the
subarray product, including the host on which it ran and the Mesos
TaskInfo structure.

Common stream metadata

The list of streams that can be accessed from the archive is available
in sdp_archived_streams (in the global namespace). Within each
stream, the following keys may be defined (not all make sense for
every stream type).

Only stream_type and src_streams are guaranteed to be in the
stream namespace, i.e. independent of the capture block. The others may
appear either in the capture-stream namespace or the stream namespace.

	inherit (string)

	If present, it indicates another stream from which this stream
inherits properties. Any property that cannot be found in the
namespace of the current stream should first be looked up in that
stream’s namespace.

This is typically used where a single multicast stream is recorded
in multiple places. Each copy inherits the majority of metadata from
the original and overrides a few keys.

	stream_type (string)

	Valid values are

	sdp.vis

	Uncalibrated visibilities, flags and weights

	sdp.flags

	Similar to sdp.vis, but containing only flags

	sdp.cal

	Calibration solutions. Older files may contain a cal stream
which omits the stream information and which does not appear in
sdp_archived_streams, so that should be considered as a
fallback.

	sdp.continuum_image

	Continuum image (as a list of CLEAN components) and
self-calibration solutions. FITS files will be stored in the
MeerKAT archive but katdal does not currently support accessing
them.

	sdp.spectral_image

	Spectral-line image. FITS files will be stored in the
MeerKAT archive but katdal does not currently support accessing
them.

	src_streams (list of string)

	The streams from which the current stream was computed. These are
not necessarily listed in sdp_archived_streams, particularly if
they were produced by the MeerKAT Correlator/Beamformer (CBF) rather
than the SDP.

	n_chans (int)

	Number of channels in a channelised product.

	n_chans_per_substream (int)

	Number of channels in each SPEAD heap. Not relevant when loading
archived data.

	bandwidth (float, Hz)

	Bandwidth of the stream.

	center_freq (float, Hz)

	Middle of the central channel. Note that if the number of channels
is even, this is actually half a channel higher than the middle of
the band.

	channel_range (int, int)

	A half-open range of channels taken from the source stream. The
length of this range might not equal n_chans due to channel
averaging.

Visibility stream metadata

The following are relevant to sdp.vis and sdp.flags streams.

	n_bls (int)

	Number of baselines. Note that a baseline is a correlation between
two polarised inputs (a single entry in a Jones matrix).

	bls_ordering (either a list of string pairs or a 2D array)

	An array of pairs of strings. Each pair names two antenna inputs
that form a baseline. There will be n_bls rows. Note that this
can be either a list of 2-element lists or a NumPy array.

	sync_time, int_time, first_timestamp (float)

	Refer to Timestamps below.

	excise (bool)

	True if RFI detected in the source stream is excised during
time and channel averaging. If missing, assume it is true.

	calibrations_applied (list of string)

	Names of sdp.cal streams whose corrections have been applied to
the data.

	need_weights_power_scale (bool)

	Refer to Weights below. If missing, assume it is false.

	s3_endpoint_url (string), chunk_info

	Refer to Data below.

Calibration solutions

Streams of type sdp.cal have the following keys.

	antlist (list of string, length n_ants)

	List of antenna names. Arrays of calibration solutions use this
order along the antenna axis.

	pol_ordering (list of string, length n_pols)

	List of polarisations (from v and h). Arrays of calibration
solutions use this order along the polarisation axis.

	bls_ordering (either a list of string pairs or a 2D array)

	Same meaning as for sdp.vis streams, but describes the internal
ordering used within the calibration pipeline and not of much use to
users.

	param_*

	Parameters used to configure the calibration.

	refant (string)

	Name of the selected reference antenna (which will also appear in
antlist). The reference antenna is only chosen when first needed in
a capture block, so this key may be absent if there was no calibration yet.
In older datasets this key contains the katpoint [https://github.com/ska-sa/katpoint] antenna description
string instead of the name.

	product_G (array of complex, shape (n_pols, n_ants)) — sensor

	Gain solutions (derived e.g. on a phase calibrator), indexed by
polarisation and antenna. The complex values in the array apply to the
entire band.

	product_K (array of float, shape (n_pols, n_ants)) — sensor

	Delay solutions (in seconds), indexed by polarisation and antenna. To
correct data at frequency \(\nu\), multiply it by
\(e^{-2\pi i\cdot K\cdot \nu}\).

	product_B_parts (int)

	Number of keys across which bandpass-like solutions are split.

	product_BN (array of complex, shape (n_chans, n_pols, n_ants)) — sensor

	Bandpass solutions, indexed by channel, polarisation and antenna.

For implementation reasons, the bandpass solutions are split across
multiple keys. N is in the range [0, product_B_parts), and
these pieces should be concatenated along the channel (first) axis
to reconstruct the full solution. If some pieces are missing (which
is rare but can occur), they should be assumed to have the same
shape as the present pieces.

	product_KCROSS_DIODE (array of float, shape (n_pols, n_ants)) — sensor

	Cross-hand delay solutions (in seconds), indexed by polarisation
and antenna. Derived using noise diode firings.

Data at a given frequency is corrected in the same manner as
product_K. One polarisation will serve as the reference
polarisation and have all zero solutions.

	product_KCROSS (array of float, shape (n_pols, n_ants)) — sensor

	Cross-hand delay solutions (in seconds), indexed by polarisation
and antenna.

Solutions are similar to product_KCROSS_DIODE but solved for
using a celestial source instead of a noise diode.

	product_BCROSS_DIODEN (array of complex, shape (n_chans, n_pols, n_ants)) — sensor

	Cross-hand bandpass phase solutions, indexed by channel, polarisation
and antenna.

Amplitudes for these solutions should always be one. One polarisation will
serve as the reference polarisation and have all zero phase solutions.

As for product_BN` the cross-hand bandpass solutions are
split across multiple keys indexed by N, where N is in the range
[0, product_B_parts). The full solution should be reconstructed as
for product_BN, by concatenating along the channel (first) axis.

	shared_solve_*N*, last_dump_index*N*

	These are used for internal communication between the calibration
processes, and are not intended for external use.

Some common points to note that about the solutions:

	Solutions describe the systematic errors. To correct data, it must be divided
by the solutions.

	The key will only be present if at least one solution was computed.

	The timestamp associated with each sensor value is the timestamp of
the middle of the data that was used to compute the solution.

	Solutions may contain NaN values, which indicates that there was
insufficient information to compute a solution (for example, because
all the data was flagged).

	Solutions are only valid as long as the system gain controls are not altered.
Re-using gains from one capture block to correct data from another capture
block may yield incorrect results unless one takes extra steps to correct for
changes in the system gains.

Image stream metadata

The following apply to sdp.continuum_image and sdp.spectral_image
streams.

	target_list (dict)

	This is only applicable for imaging streams. Each key is a
katpoint [https://github.com/ska-sa/katpoint] target description and the value is the normalised target
name, which is a string used to form target-specific sub-namespaces of the
stream and capture-stream namespaces. A normalised target name looks
similar to the target name but has a limited character set (suitable for
forming filenames and telstate namespaces) and, where necessary, a sequence
number appended to ensure uniqueness.

For each sdp.continuum_image stream, there is a sub-namespace per target
(named with the normalised target name) with the following keys (keeping
in mind that . is used to indicate whichever separator is in use by
katsdptelstate for this database):

	target0.clean_components (dict)

	Image of the target field as a set of point sources. The target0
sub-namespace is used to allow for possible alternative ways to run
the continuum imager in which a single execution would image
multiple fields, in which case there would be targetN
sub-namespaces up to some N. This is not currently expected for
MeerKAT science observations.

The dictionary has two keys:

	description (string)

	katpoint [https://github.com/ska-sa/katpoint] description of the target field (specifically, the
phase centre).

	components (list of string)

	katpoint [https://github.com/ska-sa/katpoint] target descriptions for the CLEAN components. The
names are arbitrary. This describes the perceived sky i.e., are
modulated by the primary beam.

Each sub-namespace per target contains a further sub-sub-namespace called
selfcal that contains the self-calibration solutions. It behaves like
an sdp.cal stream namespace and has the following keys:

	antlist (list of string, length n_ants)

	List of antenna names. Arrays of self-calibration solutions use this
order along the antenna axis.

	pol_ordering (list of string, length n_pols)

	List of polarisations (from v and h). Arrays of self-calibration
solutions use this order along the polarisation axis.

	n_chans (int)

	Number of channels in the self-calibration solutions, which corresponds to
the number of “IFs” or sub-bands in the continuum imager.

	bandwidth (float, Hz)

	Bandwidth of the self-calibration solutions.

	center_freq (float, Hz)

	Middle of the central channel. Note that if the number of channels
is even, this is actually half a channel higher than the middle of
the band.

	product_GPHASE (array of complex, shape (n_chans, n_pols, n_ants)) — sensor

	Phase-only self-calibration solutions, indexed by channel, polarisation
and antenna.

Amplitudes for these solutions will be very close to one (to within
numerical precision).

	product_GAMP_PHASE (array of complex, shape (n_chans, n_pols, n_ants)) — sensor

	Amplitude + phase self-calibration solutions, indexed by channel,
polarisation and antenna.

Timestamps

Timestamps are not stored explicitly. Instead, the first timestamp and
the interval between dumps are stored, from which timestamps can be
synthesised. The ith dump has a central timestamp (in the UNIX epoch) of
\(\text{sync_time} + \text{first_timestamp} + i \times
\text{int_time}\). The split of the initial timestamp into two parts is
for technical reasons.

There is also first_timestamp_adc, which is the same as
first_timestamp but in units of the digitiser ADC counts. It is
stored only for internal implementation reasons and should not be relied
upon.

Light RDB files

The MeerKAT system also writes a “light” version of each RDB file, which
contains only a subset of the keys. It is intended to contain enough
information to read the uncalibrated visibilities and some high-level metadata
about the observation itself. It does not contain information about antenna
pointing, calibration, or CLEAN components.

Data

Visibilities, flags and weights are subdivided into small chunks. The
chunking model is based on dask [http://docs.dask.org/en/latest/]. Visibilities are treated as a 3D
array, with axes for time, frequency and baseline. The data is divided
into pieces along each axis. Each piece is stored in a separate file
in the archive, in .npy format [https://docs.scipy.org/doc/numpy-1.14.0/neps/npy-format.html]. The metadata necessary to reconstruct
the array is stored in the telescope state and documented in more detail
later. It is possible that some chunks will be missing, because they
were lost during the capture process. On load, katdal will replace such
chunks with default values and set the data_lost flag for them.
Weights and flags are similarly treated.

Chunks are named type/AAAAA_BBBBB_CCCCC.npy where type
is one of correlator_data (visibilities), flags, weights;
and AAAAA, BBBBB and CCCCC are the (zero-based) indices of the
first element in the chunk along each axis, padded to a minimum of five digits.
Additionally, there are chunks named
weights_channel/AAAAA_BBBBB.npy, explained below.

Note that the chunking scheme typically differs between visibilities,
flags and weights, so files with the same base name start at the same point
but do not necessarily have the same extent.

All the data for one stream is located in a single chunk store. If it is
in the MeerKAT archive, the URL to the base of this chunk store
(implementing the S3 protocol) is stored in s3_endpoint_url.
Capture-stream specific information is stored in chunk_info, a
two-level dictionary. The outer key is the type listed above, and the
inner key is one of:

	prefix (string)

	A path prefix for the data. In the case of S3, this is the bucket
name. For local storage, it is a directory name (the parent of the
type directory).

	dtype (string)

	Numpy dtype of the data, which is expected to match the dtype
encoded in the individual chunk files.

	shape (tuple)

	Shape of the virtual dask array obtained by joining together all the
chunks.

	chunks (tuple of tuples)

	Sizes of the chunks along each axis, in the format used by dask.

Weights

To save space, the weights are represented in an indirect form that
requires some calculation to reconstruct. The actual weight for a
visibility is the product of three values:

	The value in the weights chunk.

	A baseline-independent value in the weights_channel chunk.

	If the stream has a need_weights_power_scale key in telstate and
the value is true, the inverse of the product of the autocorrelation
power for the two inputs in the baseline.

Flags

Each flag is a bitfield. The meaning of the individual bits is
documented in the katdal.flags module. Note that it is possible
that a flag chunk is present but the corresponding visibility or weight
data is missing, in which case it is the reader’s responsibility to set
the data_lost bit.

The MeerKAT Science Data Processor typically uses two levels of
flagging: a conservative first-pass flagger run directly on the
correlator output, and a more accurate flagger that operates on
data that has been averaged and (in some cases) calibrated. The latter
appears in a stream of type sdp.flags, which contains only flags. It
can be linked to the corresponding visibilities and weights by checking
its source streams. The flags in this stream are a
superset of the flags in the originating stream and are guaranteed to
have the same timestamp and frequency metadata, so can be used in place
of the original flags. However, due to data loss it is possible that
the replacement flags will have slightly more or fewer dumps at the end,
which will need to be handled.

katdal

	katdal package
	Submodules

	katdal.applycal module

	katdal.averager module

	katdal.categorical module

	katdal.chunkstore module

	katdal.chunkstore_dict module

	katdal.chunkstore_npy module

	katdal.chunkstore_s3 module

	katdal.concatdata module

	katdal.dataset module

	katdal.datasources module

	katdal.flags module

	katdal.h5datav1 module

	katdal.h5datav2 module

	katdal.h5datav3 module

	katdal.lazy_indexer module

	katdal.ms_async module

	katdal.ms_extra module

	katdal.sensordata module

	katdal.spectral_window module

	katdal.visdatav4 module

	Module contents

katdal package

Submodules

katdal.applycal module

Utilities for applying calibration solutions to visibilities and weights.

	
katdal.applycal.complex_interp(x, xi, yi, left=None, right=None)

	Piecewise linear interpolation of magnitude and phase of complex values.

Given discrete data points (xi, yi), this returns a 1-D piecewise
linear interpolation y evaluated at the x coordinates, similar to
numpy.interp(x, xi, yi). While numpy.interp() interpolates the real
and imaginary parts of yi separately, this function interpolates
magnitude and (unwrapped) phase separately instead. This is useful when the
phase of yi changes more rapidly than its magnitude, as in electronic
gains.

	Parameters

	
	x (1-D sequence of float, length M) – The x-coordinates at which to evaluate the interpolated values

	xi (1-D sequence of float, length N) – The x-coordinates of the data points, must be sorted in ascending order

	yi (1-D sequence of complex, length N) – The y-coordinates of the data points, same length as xi

	left (complex, optional) – Value to return for x < xi[0], default is yi[0]

	right (complex, optional) – Value to return for x > xi[-1], default is yi[-1]

	Returns

	y – The evaluated y-coordinates, same length as x and same dtype as yi

	Return type

	array of complex, length M

	
katdal.applycal.get_cal_product(cache, cal_stream, product_type)

	Extract calibration solution from cache as a sensor.

	Parameters

	
	cache (SensorCache object) – Sensor cache serving cal product sensors

	cal_stream (string) – Name of calibration stream (e.g. “l1”)

	product_type (string) – Calibration product type (e.g. “G”)

	
katdal.applycal.calc_delay_correction(sensor, index, data_freqs)

	Calculate correction sensor from delay calibration solution sensor.

Given the delay calibration solution sensor, this extracts the delay time
series of the input specified by index (in the form (pol, ant)) and
builds a categorical sensor for the corresponding complex correction terms
(channelised by data_freqs).

Invalid delays (NaNs) are replaced by zeros, since bandpass calibration
still has a shot at fixing any residual delay.

	
katdal.applycal.calc_bandpass_correction(sensor, index, data_freqs, cal_freqs)

	Calculate correction sensor from bandpass calibration solution sensor.

Given the bandpass calibration solution sensor, this extracts the time
series of bandpasses (channelised by cal_freqs) for the input specified
by index (in the form (pol, ant)) and builds a categorical sensor for
the corresponding complex correction terms (channelised by data_freqs).

Invalid solutions (NaNs) are replaced by linear interpolations over
frequency (separately for magnitude and phase), as long as some channels
have valid solutions.

	
katdal.applycal.calc_gain_correction(sensor, index, targets=None)

	Calculate correction sensor from gain calibration solution sensor.

Given the gain calibration solution sensor, this extracts the time
series of gains for the input specified by index (in the form (pol, ant))
and interpolates them over time to get the corresponding complex correction
terms. The optional targets parameter is a CategoricalData i.e.
a sensor indicating the target associated with each dump. The targets can
be actual katpoint.Target objects or indices, as long as they
uniquely identify the target. If provided, interpolate solutions derived
from one target only at dumps associated with that target, which is what
you want for self-calibration solutions (but not for standard calibration
based on gain calibrator sources).

Invalid solutions (NaNs) are replaced by linear interpolations over time
(separately for magnitude and phase), as long as some dumps have valid
solutions on the appropriate target.

	
katdal.applycal.calibrate_flux(sensor, targets, gaincal_flux)

	Apply flux scale to calibrator gains (aka flux calibration).

Given the gain calibration solution sensor, this identifies the target
associated with each set of solutions by looking up the gain events in the
targets sensor, and then scales the gains by the inverse square root of
the relevant flux if a valid match is found in the gaincal_flux dict. This
is equivalent to the final step of the AIPS GETJY and CASA fluxscale tasks.

	
katdal.applycal.add_applycal_sensors(cache, attrs, data_freqs, cal_stream, cal_substreams=None, gaincal_flux={})

	Register virtual sensors for one calibration stream.

This operates on a single calibration stream called cal_stream (possibly
an alias), which derives from one or more underlying cal streams listed in
cal_substreams and has stream attributes in attrs.

The first set of virtual sensors maps all cal products into a unified
namespace (template ‘Calibration/Products/cal_stream/{product_type}’).
Map receptor inputs to the relevant indices in each calibration product
based on the ants and pols found in attrs. Then register a virtual sensor
per product type and per input in the SensorCache cache, with template
‘Calibration/Corrections/cal_stream/{product_type}/{inp}’. The virtual
sensor function picks the appropriate correction calculator based on the
cal product type, which also uses auxiliary info like the channel
frequencies, data_freqs.

	Parameters

	
	cache (SensorCache object) – Sensor cache serving cal product sensors and receiving correction sensors

	attrs (dict-like) – Calibration stream attributes (e.g. a “cal” telstate view)

	data_freqs (array of float, shape (F,)) – Centre frequency of each frequency channel of visibilities, in Hz

	cal_stream (string) – Name of (possibly virtual) calibration stream (e.g. “l1”)

	cal_substreams (sequence of string, optional) – Names of actual underlying calibration streams (e.g. [“cal”]),
defaults to [cal_stream] itself

	gaincal_flux (dict mapping string to float, optional) – Flux density (in Jy) per gaincal target name, used to flux calibrate
the “G” product, overriding the measured flux stored in attrs
(if available). A value of None disables flux calibration.

	Returns

	cal_freqs – Centre frequency of each frequency channel of calibration stream, in Hz
(or None if no sensors were registered)

	Return type

	1D array of float, or None

	
class katdal.applycal.CorrectionParams(inputs, input1_index, input2_index, corrections, channel_maps)

	Bases: object

Data needed to compute corrections in calc_correction_per_corrprod().

Once constructed, the data in this class must not be modified, as it will
be baked into dask graphs.

	Parameters

	
	inputs (list of str) – Names of inputs, in the same order as the input axis of products

	input2_index (input1_index,) – Indices into inputs of first and second items of correlation product

	corrections (dict) – A dictionary (indexed by cal product name) of lists (indexed
by input) of sequences (indexed by dump) of numpy arrays, with
corrections to apply.

	channel_maps (dict) – A dictionary (indexed by cal product name) of functions (signature
g = channel_map(g, channels)) that map the frequency axis of the
cal product g onto the frequency axis of the visibility data, where
the vis frequency axis will be indexed by the slice channels.

	
katdal.applycal.calc_correction_per_corrprod(dump, channels, params)

	Gain correction per channel per correlation product for a given dump.

This calculates an array of complex gain correction terms of shape
(n_chans, n_corrprods) that can be directly applied to visibility data.
This incorporates all requested calibration products at the specified
dump and channels.

	Parameters

	
	dump (int) – Dump index (applicable to full data set, i.e. absolute)

	channels (slice) – Channel indices (applicable to full data set, i.e. absolute)

	params (CorrectionParams) – Corrections per input, together with correlation product indices

	Returns

	gains – Gain corrections per channel per correlation product

	Return type

	array of complex64, shape (n_chans, n_corrprods)

	Raises

	KeyError – If input and/or cal product has no associated correction

	
katdal.applycal.calc_correction(chunks, cache, corrprods, cal_products, data_freqs, all_cal_freqs, skip_missing_products=False)

	Create a dask array containing applycal corrections.

	Parameters

	
	chunks (tuple of tuple of int) – Chunking scheme of the resulting array, in normalized form (see
dask.array.core.normalize_chunks()).

	cache (SensorCache object) – Sensor cache, used to look up individual correction sensors

	corrprods (sequence of (string, string)) – Selected correlation products as pairs of correlator input labels

	cal_products (sequence of string) – Calibration products that will contribute to corrections (e.g. [“l1.G”])

	data_freqs (array of float, shape (F,)) – Centre frequency of each frequency channel of visibilities, in Hz

	all_cal_freqs (dict) – Dictionary mapping cal stream name (e.g. “l1”) to array of associated
frequencies

	skip_missing_products (bool) – If True, skip products with missing sensors instead of raising KeyError

	Returns

	
	final_cal_products (list of string) – List of calibration products in the order that they will be applied
(potentially a subset of cal_products if skipping missing products)

	corrections (dask.array.Array object, or None) – Dask array that produces corrections for entire vis array, or None if
no calibration products were found (either cal_products is empty or all
products had some missing sensors and skip_missing_products is True)

	Raises

	KeyError – If a correction sensor for a given input and cal product is not found
(and skip_missing_products is False)

	
katdal.applycal.apply_vis_correction

	Clean up and apply correction to visibility data in data.

	
katdal.applycal.apply_weights_correction

	Clean up and apply correction to weight data in data.

	
katdal.applycal.apply_flags_correction

	Set POSTPROC flag wherever correction is invalid.

katdal.averager module

	
katdal.averager.average_visibilities(vis, weight, flag, timestamps, channel_freqs, timeav=10, chanav=8, flagav=False)

	Average visibilities, flags and weights.

Visibilities are weight-averaged using the weights in the weight array
with flagged data set to weight zero. The averaged weights are the sum of
the input weights for each average block. An average flag is retained if
all of the data in an averaging block is flagged (the averaged visibility
in this case is the unweighted average of the input visibilities). In cases
where the averaging size in channel or time does not evenly divide the size
of the input data, the remaining channels or timestamps at the end of the
array after averaging are discarded. Channels are averaged first and the
timestamps are second. An array of timestamps and frequencies corresponding
to each channel is also directly averaged and returned.

	Parameters

	
	vis (array(numtimestamps,numchannels,numbaselines) of complex64.) – The input visibilities to be averaged.

	weight (array(numtimestamps,numchannels,numbaselines) of float32.) – The input weights (used for weighted averaging).

	flag (array(numtimestamps,numchannels,numbaselines) of boolean.) – Input flags (flagged data have weight zero before averaging).

	timestamps (array(numtimestamps) of int.) – The timestamps (in mjd seconds) corresponding to the input data.

	channel_freqs (array(numchannels) of int.) – The frequencies (in Hz) corresponding to the input channels.

	timeav (int.) – The desired averaging size in timestamps.

	chanav (int.) – The desired averaging size in channels.

	flagav (bool) – Flagged averaged data in when there is a single flag in the bin if true.
Only flag averaged data when all data in the bin is flagged if false.

	Returns

	
	av_vis (array(int(numtimestamps/timeav),int(numchannels/chanav)) of complex64.)

	av_weight (array(int(numtimestamps/timeav),int(numchannels/chanav)) of float32.)

	av_flag (array(int(numtimestamps/timeav),int(numchannels/chanav)) of boolean.)

	av_mjd (array(int(numtimestamps/timeav)) of int.)

	av_freq (array(int(numchannels)/chanav) of int.)

katdal.categorical module

Container for categorical (i.e. non-numerical) sensor data and related tools.

	
class katdal.categorical.ComparableArrayWrapper(value)

	Bases: object

Wrapper that improves comparison of array objects.

This wrapper class has two main benefits:

	It prevents sensor values that are NumPy ndarrays themselves
(or array-like objects such as tuples and lists) from dissolving
and losing their identity when they are assembled into an array.

	It ensures that array-valued sensor values become properly comparable
(avoiding array-valued booleans resulting from standard comparisons).

The former is needed because SensorGetter is treated as a structured
array even if it contains object values. The latter is needed because the
equality operator crops up in hard-to-reach places like inside list.index().

	Parameters

	value (object) – The sensor value to be wrapped

	
static unwrap(v)

	Unwrap value if needed.

	
katdal.categorical.infer_dtype(values)

	Figure out dtype of sequence of sensor values.

The common dtype is determined by explicit NumPy promotion. If the values
are array-like themselves, treat them as opaque objects to simplify
sensor processing. If the sequence is empty, the dtype is unknown and
set to None. In addition, short-circuit to an actual dtype for objects
with this attribute to simplify calling this on a mixed collection of
sensor data.

	Parameters

	values (sequence, or object with dtype) – Sequence of sensor values (typically a list), or a sensor data object
with a dtype attribute (like ndarray or SensorGetter)

	Returns

	dtype – Inferred dtype, or None if values is an empty sequence

	Return type

	numpy.dtype object or None

Notes

This is almost, but not quite, entirely like numpy.result_type().
The differences are that this accepts generic objects in the sequence,
treats ndarrays as objects regardless of their underlying dtype, supports
a dtype of None and short-circuits the check if the sequence itself is an
object with a dtype. And this accepts the sequence as the first parameter
as opposed to being unpacked across the argument list.

	
katdal.categorical.unique_in_order(elements, return_inverse=False)

	Extract unique elements from elements while preserving original order.

	Parameters

	
	elements (sequence) – Sequence of equality-comparable objects

	return_inverse ({False, True}, optional) – If True, also return sequence of indices that can be used to reconstruct
original elements sequence via [unique_elements[i] for i in inverse]

	Returns

	
	unique_elements (list) – List of unique objects, in original order they were found in elements

	inverse (array of int, optional) – If return_inverse is True, sequence of indices that can be used to
reconstruct original sequence

	
class katdal.categorical.CategoricalData(sensor_values, events)

	Bases: object

Container for categorical (i.e. non-numerical) sensor data.

This container allows simple manipulation and interpolation of a time series
of non-numerical data represented as discrete events. The data is stored as
a list of sensor values and two integer arrays:

	unique_values stores one copy of each unique object in the data series

	events stores the time indices (dumps) where each event occurs

	indices stores indices linking each event to the unique_values list

The __getitem__ interface (i.e. data[dump]) returns the data associated
with the last event before the requested dump(s), in effect doing a
zeroth-order interpolation of the data at each event. Events can be added
and removed and realigned, and the container can be split along the time
axis, amongst other functionality.

	Parameters

	
	sensor_values (sequence, length N) – Sequence of sensor values (of any type, preferably not None [see Notes])

	events (sequence of non-negative ints, length N + 1) – Corresponding monotonic sequence of dump indices where each sensor value
came into effect. The last event is one past the last dump where the
final sensor value applied, and therefore equal to the total number of
dumps for which sensor values were specified.

	
unique_values

	List of unique sensor values in order they were found in sensor_values
with any ComparableArrayWrapper objects unwrapped

	Type

	list, length M

	
indices

	Array of indices into unique_values, one per sensor event

	Type

	array of int, shape (N,)

	
dtype

	Sensor data type as NumPy dtype (found on demand from unique_values)

	Type

	numpy.dtype object

Notes

Any object values wrapped in a ComparableArrayWrapper will be
unwrapped before adding it to unique_values. When adding, removing and
comparing values to this container, any object values will be wrapped again
temporarily to ensure proper comparisons.

It is discouraged to have a sensor value of None as this value is given
a special meaning in methods such as CategoricalData.add() and
sensor_to_categorical(). On the other hand, it is the most sensible
dummy object value and any Nones entering through this initialiser will
probably not cause any issues.

It is better to make unique_values a list instead of an array because an
array assimilates objects such as tuples, lists and other arrays. The
alternative is an array of ComparableArrayWrapper objects but
these then need to be unpacked at some later stage which is also tricky.

	
dtype

	Sensor value type.

	
segments()

	Generator that iterates through events and returns segment and value.

	Yields

	
	segment (slice object) – The slice representing range of dump indices of the current segment

	value (object) – Sensor value associated with segment

	
add(event, value=None)

	Add or override sensor event.

This adds a new event to the container, with a new value or a duplicate
of the existing value at that dump. If the new event coincides with an
existing one, it overrides the value at that dump.

	Parameters

	
	event (int) – Dump of event to add or override

	value (object, optional) – New value for event (duplicate current value at this dump by default)

	
remove(value)

	Remove sensor value, remapping indices and merging segments in process.

If the sensor value does not exist, do nothing.

	Parameters

	value (object) – Sensor value to remove from container

	
add_unmatched(segments, match_dist=1)

	Add duplicate events for segment starts that don’t match sensor events.

Given a sequence of segments, this matches each segment start to the
nearest sensor event dump (within match_dist). Any unmatched segment
starts are added as duplicate sensor events (or ignored if they fall
outside the sensor event range).

	Parameters

	
	segments (sequence of int) – Monotonically increasing sequence of segment starts, including an
extra element at the end that is one past the end of the last segment

	match_dist (int, optional) – Maximum distance in dumps that signify a match between events

	
align(segments)

	Align sensor events with segment starts, possibly discarding events.

Given a sequence of segments, this moves each sensor event dump onto the
nearest segment start. If more than one event ends up in the same segment,
only keep the last event, discarding the rest.

The end result is that the sensor event dumps become a subset of the
segment starts and there cannot be more sensor events than segments.

	Parameters

	segments (sequence of int) – Monotonically increasing sequence of segment starts, including an
extra element at the end that is one past the end of the last segment

	
partition(segments)

	Partition dataset into multiple sets along time axis.

Given a sequence of segments, split the container into a sequence of
containers, one per segment. Each container contains only the events
occurring within its corresponding segment, with event dumps relative to
the start of the segment, and the containers share the same unique
values.

	Parameters

	segments (sequence of int) – Monotonically increasing sequence of segment starts, including an
extra element at the end that is one past the end of the last segment

	Returns

	split_data – Resulting multiple datasets in chronological order

	Return type

	sequence of CategoricalData objects

	
remove_repeats()

	Remove repeated events of the same value.

	
katdal.categorical.concatenate_categorical(split_data, **kwargs)

	Concatenate multiple categorical datasets into one along time axis.

Join a sequence of categorical datasets together, by forming a common set of
unique values, remapping events to these and incrementing the event dumps of
each dataset to start off where the previous dataset ended.

	Parameters

	split_data (sequence of CategoricalData objects) – Sequence of containers to concatenate

	Returns

	data – Concatenated dataset

	Return type

	CategoricalData object

	
katdal.categorical.sensor_to_categorical(sensor_timestamps, sensor_values, dump_midtimes, dump_period, transform=None, initial_value=None, greedy_values=None, allow_repeats=False, **kwargs)

	Align categorical sensor events with dumps and clean up spurious events.

This converts timestamped sensor data into a categorical dataset by
comparing the sensor timestamps to a series of dump timestamps and assigning
each sensor event to the dump in which it occurred. When multiple sensor
events happen in the same dump, only the last one is kept. The first dump is
guaranteed to have a valid value by either using the supplied initial_value
or extrapolating the first proper value back in time. The sensor data may
be transformed before events that repeat values are potentially discarded.
Finally, events with values marked as “greedy” take precedence over normal
events when both occur within the same dump (either changing from or to the
greedy value, or if the greedy value occurs completely within a dump).

XXX Future improvements include picking the event with the longest duration
within a dump as opposed to the final event, and “snapping” event boundaries
to dump boundaries with a given tolerance (e.g. 5-10% of dump period).

	Parameters

	
	sensor_timestamps (sequence of float, length M) – Sequence of sensor timestamps (typically UTC seconds since Unix epoch)

	sensor_values (sequence, length M) – Corresponding sequence of sensor values [potentially wrapped]

	dump_midtimes (sequence of float, length N) – Sequence of dump midtimes (same reference as sensor timestamps)

	dump_period (float) – Duration of each dump, in seconds

	transform (callable or None, optional) – Transform [unwrapped] sensor values before fixing initial value,
mapping dumps to events and discarding repeats

	initial_value (object or None, optional) – Sensor value [transformed, unwrapped] to use for dump = 0 up to first
proper event (force first proper event to start at dump = 0 by default)

	greedy_values (sequence or None, optional) – List of [transformed, unwrapped] sensor values considered “greedy”

	allow_repeats ({False, True}, optional) – If False, discard sensor events that do not change [transformed] value

	Returns

	data – Constructed categorical dataset [unwraps any wrapped values]

	Return type

	CategoricalData object

katdal.chunkstore module

Base class for accessing a store of chunks (i.e. N-dimensional arrays).

	
exception katdal.chunkstore.ChunkStoreError

	Bases: Exception

“Base class for all standard ChunkStore errors.

	
exception katdal.chunkstore.StoreUnavailable

	Bases: OSError, katdal.chunkstore.ChunkStoreError

Could not access underlying storage medium (offline, auth failed, etc).

	
exception katdal.chunkstore.ChunkNotFound

	Bases: KeyError, katdal.chunkstore.ChunkStoreError

The store was accessible but a chunk with the given name was not found.

	
exception katdal.chunkstore.BadChunk

	Bases: ValueError, katdal.chunkstore.ChunkStoreError

The chunk is malformed, e.g. bad dtype, actual shape differs from requested.

	
class katdal.chunkstore.PlaceholderChunk(shape, dtype)

	Bases: object

Chunk returned to indicate missing data.

	
katdal.chunkstore.generate_chunks(shape, dtype, max_chunk_size, dims_to_split=None, power_of_two=False, max_dim_elements=None)

	Generate dask chunk specification from ndarray parameters.

	Parameters

	
	shape (sequence of int) – Array shape

	dtype (numpy.dtype object or equivalent) – Array data type

	max_chunk_size (float or int) – Upper limit on chunk size (if allowed by dims_to_split), in bytes

	dims_to_split (sequence of int, optional) – Indices of dimensions that may be split into chunks (default all dims)

	power_of_two (bool, optional) – True if chunk size should be rounded down to a power of two
(the last chunk size along each dimension will potentially be smaller)

	max_dim_elements (dict, optional) – Maximum number of elements on each dimension (each key is a dimension
index). Dimensions that are not in dims_to_split are ignored.

	Returns

	chunks – Dask chunk specification, indicating chunk sizes along each dimension

	Return type

	tuple of tuple of int

	
katdal.chunkstore.npy_header_and_body(chunk)

	Prepare a chunk for low-level writing.

Returns the .npy header and a view of the chunk corresponding to that
header. The two should be concatenated (as buffer objects) to form a
valid .npy file.

This is useful for high-performance code, as it allows a chunk to be
encoded as a .npy file more efficiently than saving to a
io.BytesIO.

	
class katdal.chunkstore.ChunkStore(error_map=None)

	Bases: object

Base class for accessing a store of chunks (i.e. N-dimensional arrays).

A chunk is a simple (i.e. unit-stride) slice of an N-dimensional array
known as its parent array. The array is identified by a string name,
while the chunk within the array is identified by a sequence of slice
objects which may be used to extract the chunk from the array. The array
is a numpy.ndarray object with an associated dtype.

The basic idea is that the chunk store contains multiple arrays addressed
by name. The list of available arrays and all array metadata (shape,
chunks and dtype) are stored elsewhere. The metadata is used to identify
chunks, while the chunk store takes care of storing and retrieving
bytestrings of actual chunk data. These are packaged back into NumPy
arrays for the user. Each array can only be stored once, with a unique
chunking scheme (i.e. different chunking of the same data is disallowed).

The naming scheme for arrays and chunks is reasonably generic but has
some restrictions:

	Names are treated like paths with components and a standard separator

	The chunk name is formed by appending a string of indices to the array name

	It is discouraged to have an array name that is a prefix of another name

	Each chunk store has its own restrictions on valid characters in names:
some treat names as URLs while others treat them as filenames. A safe
choice for name components should be the valid characters for S3 buckets
(also including underscores for non-bucket components):

VALID_BUCKET = re.compile(r’^[a-z0-9][a-z0-9.-]{2,62}$’)

	Parameters

	error_map (dict mapping Exception to Exception, optional) – Dict that maps store-specific errors to standard ChunkStore errors

	
get_chunk(array_name, slices, dtype)

	Get chunk from the store.

	Parameters

	
	array_name (string) – Identifier of parent array x of chunk

	slices (sequence of unit-stride slice objects) – Identifier of individual chunk, to be extracted as x[slices]

	dtype (numpy.dtype object or equivalent) – Data type of array x

	Returns

	chunk – Chunk as ndarray with dtype dtype and shape dictated by slices

	Return type

	numpy.ndarray object

	Raises

	
	TypeError – If slices is not a sequence of slice(start, stop, 1) objects

	chunkstore.BadChunk – If requested dtype does not match underlying parent array dtype
or stored buffer has wrong size / shape compared to slices

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	chunkstore.ChunkNotFound – If requested chunk was not found in store

	
get_chunk_or_default(array_name, slices, dtype, default_value=0)

	Get chunk from the store but return default value if it is missing.

	
get_chunk_or_placeholder(array_name, slices, dtype)

	Get chunk from the store but return a PlaceholderChunk if it is missing.

	
create_array(array_name)

	Create a new array if it does not already exist.

	Parameters

	array_name (string) – Identifier of array

	Raises

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	
put_chunk(array_name, slices, chunk)

	Put chunk into the store.

	Parameters

	
	array_name (string) – Identifier of parent array x of chunk

	slices (sequence of unit-stride slice objects) – Identifier of individual chunk, to be extracted as x[slices]

	chunk (numpy.ndarray object) – Chunk as ndarray with shape commensurate with slices

	Raises

	
	TypeError – If slices is not a sequence of slice(start, stop, 1) objects

	chunkstore.BadChunk – If the shape implied by slices does not match that of chunk

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	chunkstore.ChunkNotFound – If array_name is incompatible with store

	
put_chunk_noraise(array_name, slices, chunk)

	Put chunk into store but return any exceptions instead of raising.

	
mark_complete(array_name)

	Write a special object to indicate that array_name is finished.

This operation is idempotent.

The array_name need not correspond to any array written with
put_chunk(). This has no effect on katdal, but a producer can
call this method to provide a hint to a consumer that no further data
will be coming for this array. When arrays are arranged in a hierarchy,
a producer and consumer may agree to write a single completion marker
at a higher level of the hierarchy rather than one per actual array.

It is not necessary to call create_array() first; the
implementation will do so if appropriate.

The presence of this marker can be checked with is_complete().

	
is_complete(array_name)

	Check whether mark_complete() has been called for this array.

	
NAME_SEP = '/'

	

	
NAME_INDEX_WIDTH = 5

	

	
classmethod join(*names)

	Join components of chunk name with supported separator.

	
classmethod split(name, maxsplit=-1)

	Split chunk name into components based on supported separator.

	
classmethod chunk_id_str(slices)

	Chunk identifier in string form (e.g. ‘00012_01024_00000’).

	
classmethod chunk_metadata(array_name, slices, chunk=None, dtype=None)

	Turn array name and chunk identifier into chunk name and shape.

Form the full chunk name from array_name and slices and extract
the chunk shape from slices, validating it in the process. If chunk
or dtype is given, check that chunk is commensurate with slices
and that dtype contains no objects which would cause nasty segfaults.

	Parameters

	
	array_name (string) – Identifier of parent array x of chunk

	slices (sequence of unit-stride slice objects) – Identifier of individual chunk, to be extracted as x[slices]

	chunk (numpy.ndarray object, optional) – Actual chunk data as ndarray (used to validate shape / dtype)

	dtype (numpy.dtype object or equivalent, optional) – Data type of array x (used for validation only)

	Returns

	
	chunk_name (string) – Full chunk name used to find chunk in underlying storage medium

	shape (tuple of int) – Chunk shape tuple associated with slices

	Raises

	
	TypeError – If slices is not a sequence of slice(start, stop, 1) objects

	chunkstore.BadChunk – If the shape implied by slices does not match that of chunk,
or any dtype contains objects

	
get_dask_array(array_name, chunks, dtype, offset=(), index=(), errors=0)

	Get dask array from the store.

Handling of missing chunks is determined by the errors argument.

	Parameters

	
	array_name (string) – Identifier of array in chunk store

	chunks (tuple of tuples of ints) – Chunk specification

	dtype (numpy.dtype object or equivalent) – Data type of array

	offset (tuple of int, optional) – Offset to add to each dimension when addressing chunks in store

	errors (number or 'raise' or 'placeholder', optional) – Error handling. If ‘raise’, exceptions are passed through,
causing the evaluation to fail.

If ‘placeholder’, returns instances of PlaceholderChunk
in place of missing chunks. Note that such an array cannot be used
as-is, because an ndarray is expected, but it can be used as raw
material for building new graphs via functions like
da.map_blocks().

If a numeric value, it is used as a default value.

	Returns

	array – Dask array of given dtype

	Return type

	dask.array.Array object

	
put_dask_array(array_name, array, offset=())

	Put dask array into the store.

	Parameters

	
	array_name (string) – Identifier of array in chunk store

	array (dask.array.Array object) – Dask input array

	offset (tuple of int, optional) – Offset to add to each dimension when addressing chunks in store

	Returns

	success – Dask array of objects indicating success of transfer of each chunk
(None indicates success, otherwise there is an exception object)

	Return type

	dask.array.Array object

katdal.chunkstore_dict module

A store of chunks (i.e. N-dimensional arrays) based on a dict of arrays.

	
class katdal.chunkstore_dict.DictChunkStore(**kwargs)

	Bases: katdal.chunkstore.ChunkStore

A store of chunks (i.e. N-dimensional arrays) based on a dict of arrays.

This interprets all keyword arguments as NumPy arrays and stores them in
an arrays dict. Each array is identified by its corresponding keyword.
New arrays cannot be added via put() - they all need to be in place
at store initialisation (or can be added afterwards via direct insertion
into the arrays dict). The put method is only useful for in-place
modification of existing arrays.

	
get_chunk(array_name, slices, dtype)

	Get chunk from the store.

	Parameters

	
	array_name (string) – Identifier of parent array x of chunk

	slices (sequence of unit-stride slice objects) – Identifier of individual chunk, to be extracted as x[slices]

	dtype (numpy.dtype object or equivalent) – Data type of array x

	Returns

	chunk – Chunk as ndarray with dtype dtype and shape dictated by slices

	Return type

	numpy.ndarray object

	Raises

	
	TypeError – If slices is not a sequence of slice(start, stop, 1) objects

	chunkstore.BadChunk – If requested dtype does not match underlying parent array dtype
or stored buffer has wrong size / shape compared to slices

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	chunkstore.ChunkNotFound – If requested chunk was not found in store

	
create_array(array_name)

	Create a new array if it does not already exist.

	Parameters

	array_name (string) – Identifier of array

	Raises

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	
put_chunk(array_name, slices, chunk)

	Put chunk into the store.

	Parameters

	
	array_name (string) – Identifier of parent array x of chunk

	slices (sequence of unit-stride slice objects) – Identifier of individual chunk, to be extracted as x[slices]

	chunk (numpy.ndarray object) – Chunk as ndarray with shape commensurate with slices

	Raises

	
	TypeError – If slices is not a sequence of slice(start, stop, 1) objects

	chunkstore.BadChunk – If the shape implied by slices does not match that of chunk

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	chunkstore.ChunkNotFound – If array_name is incompatible with store

katdal.chunkstore_npy module

A store of chunks (i.e. N-dimensional arrays) based on NPY files.

	
class katdal.chunkstore_npy.NpyFileChunkStore(path, direct_write=False)

	Bases: katdal.chunkstore.ChunkStore

A store of chunks (i.e. N-dimensional arrays) based on NPY files.

Each chunk is stored in a separate binary file in NumPy .npy format.
The filename is constructed as

“<path>/<array>/<idx>.npy”

where “<path>” is the chunk store directory specified on construction,
“<array>” is the name of the parent array of the chunk and “<idx>” is
the index string of each chunk (e.g. “00001_00512”).

For a description of the .npy format, see numpy.lib.format
or the relevant NumPy Enhancement Proposal
here [http://docs.scipy.org/doc/numpy/neps/npy-format.html].

	Parameters

	
	path (string) – Top-level directory that contains NPY files of chunk store

	direct_write (bool) – If true, use O_DIRECT when writing the file. This bypasses the
OS page cache, which can be useful to avoid filling it up with
files that won’t be read again.

	Raises

	
	chunkstore.StoreUnavailable – If path does not exist / is not readable

	chunkstore.StoreUnavailable – If direct_write was requested but is not available

	
get_chunk(array_name, slices, dtype)

	Get chunk from the store.

	Parameters

	
	array_name (string) – Identifier of parent array x of chunk

	slices (sequence of unit-stride slice objects) – Identifier of individual chunk, to be extracted as x[slices]

	dtype (numpy.dtype object or equivalent) – Data type of array x

	Returns

	chunk – Chunk as ndarray with dtype dtype and shape dictated by slices

	Return type

	numpy.ndarray object

	Raises

	
	TypeError – If slices is not a sequence of slice(start, stop, 1) objects

	chunkstore.BadChunk – If requested dtype does not match underlying parent array dtype
or stored buffer has wrong size / shape compared to slices

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	chunkstore.ChunkNotFound – If requested chunk was not found in store

	
create_array(array_name)

	See the docstring of ChunkStore.create_array().

	
put_chunk(array_name, slices, chunk)

	Put chunk into the store.

	Parameters

	
	array_name (string) – Identifier of parent array x of chunk

	slices (sequence of unit-stride slice objects) – Identifier of individual chunk, to be extracted as x[slices]

	chunk (numpy.ndarray object) – Chunk as ndarray with shape commensurate with slices

	Raises

	
	TypeError – If slices is not a sequence of slice(start, stop, 1) objects

	chunkstore.BadChunk – If the shape implied by slices does not match that of chunk

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	chunkstore.ChunkNotFound – If array_name is incompatible with store

	
mark_complete(array_name)

	Write a special object to indicate that array_name is finished.

This operation is idempotent.

The array_name need not correspond to any array written with
put_chunk(). This has no effect on katdal, but a producer can
call this method to provide a hint to a consumer that no further data
will be coming for this array. When arrays are arranged in a hierarchy,
a producer and consumer may agree to write a single completion marker
at a higher level of the hierarchy rather than one per actual array.

It is not necessary to call create_array() first; the
implementation will do so if appropriate.

The presence of this marker can be checked with is_complete().

	
is_complete(array_name)

	Check whether mark_complete() has been called for this array.

katdal.chunkstore_s3 module

A store of chunks (i.e. N-dimensional arrays) based on the Amazon S3 API.

	
exception katdal.chunkstore_s3.S3ObjectNotFound

	Bases: katdal.chunkstore.ChunkNotFound

An object / bucket was not found in S3 object store.

	
exception katdal.chunkstore_s3.S3ServerGlitch

	Bases: katdal.chunkstore.ChunkNotFound

S3 chunk store responded with an HTTP error deemed to be temporary.

	
katdal.chunkstore_s3.read_array(fp)

	Read a numpy array in npy format from a file descriptor.

This is the same concept as numpy.lib.format.read_array(), but
optimised for the case of reading from http.client.HTTPResponse.
Using the numpy function reads pieces out then copies them into the
array, while this implementation uses readinto. Raise TruncatedRead
if the response runs out of data before the array is complete.

It does not allow pickled dtypes.

	
exception katdal.chunkstore_s3.AuthorisationFailed

	Bases: katdal.chunkstore.StoreUnavailable

Authorisation failed, e.g. due to invalid, malformed or expired token.

	
exception katdal.chunkstore_s3.InvalidToken(token, message)

	Bases: katdal.chunkstore_s3.AuthorisationFailed

Invalid JSON Web Token (JWT).

	
katdal.chunkstore_s3.decode_jwt(token)

	Decode JSON Web Token (JWT) string and extract claims.

The MeerKAT archive uses JWT bearer tokens for authorisation. Each token is
a JSON Web Signature (JWS) string with a payload of claims. This function
extracts the claims as a dict, while also doing basic checks on the token
(mostly to catch copy-n-paste errors). The signature is decoded but not
validated, since that would require the server secrets.

	Parameters

	token (str) – JWS Compact Serialization as an ASCII string (native string, not bytes)

	Returns

	claims – The JWT Claims Set as a dict of key-value pairs

	Return type

	dict

	Raises

	InvalidToken – If the token is malformed or truncated, or has expired

	
class katdal.chunkstore_s3.S3ChunkStore(url, timeout=(30, 300), retries=2, token=None, credentials=None, public_read=False, expiry_days=0, **kwargs)

	Bases: katdal.chunkstore.ChunkStore

A store of chunks (i.e. N-dimensional arrays) based on the Amazon S3 API.

This object encapsulates the S3 client / session and its underlying
connection pool, which allows subsequent get and put calls to share the
connections.

The full identifier of each chunk (the “chunk name”) is given by

“<bucket>/<path>/<idx>”

where “<bucket>” refers to the relevant S3 bucket, “<bucket>/<path>” is
the name of the parent array of the chunk and “<idx>” is the index string
of each chunk (e.g. “00001_00512”). The corresponding S3 key string of
a chunk is “<path>/<idx>.npy” which reflects the fact that the chunk is
stored as a string representation of an NPY file (complete with header).

	Parameters

	
	url (str) – Endpoint of S3 service, e.g. ‘http://127.0.0.1:9000’. It can be
specified as either bytes or unicode, and is converted to the native
string type with UTF-8. The URL may also contain a path if this store is
relative to an existing bucket, in which case the chunk name is a relative
path (useful for unit tests).

	timeout (float or None or tuple of 2 floats or None's, optional) – Connect / read timeout, in seconds, either a single value for both or
custom values as (connect, read) tuple. None means “wait forever”…

	retries (int or tuple of 2 ints or urllib3.util.retry.Retry, optional) – Number of connect / read retries, either a single value for both or
custom values as (connect, read) tuple, or a Retry object for full
customisation (including status retries).

	token (str, optional) – Bearer token to authenticate

	credentials (tuple of str, optional) – AWS access key and secret key to authenticate

	public_read (bool, optional) – If set to true, new buckets will be created with a policy that allows
everyone (including unauthenticated users) to read the data.

	expiry_days (int, optional) – If set to a value greater than 0 will set a future expiry time in days
for any new buckets created.

	kwargs (dict) – Extra keyword arguments (unused)

	Raises

	chunkstore.StoreUnavailable – If S3 server interaction failed (it’s down, no authentication, etc)

	
request(method, url, process=<function S3ChunkStore.<lambda>>, chunk_name='', ignored_errors=(), timeout=(), retries=None, **kwargs)

	Send HTTP request to S3 server, process response and retry if needed.

This retries temporary HTTP errors, including reset connections while
processing a successful response.

	Parameters

	
	url (method,) – The standard required parameters of requests.Session.request()

	process (function, signature result = process(response), optional) – Function that will process response (just return response by default)

	chunk_name (str, optional) – Name of chunk, used for error reporting only

	ignored_errors (collection of int, optional) – HTTP status codes that are treated like 200 OK, not raising an error

	timeout (float or None or tuple of 2 floats or None's, optional) – Override timeout for this request (use the store timeout by default)

	retries (int or tuple of 2 ints or urllib3.util.retry.Retry, optional) – Override retries for this request (use the store retries by default)

	kwargs (optional) – These are passed on to requests.Session.request()

	Returns

	result – The output of the process function applied to a successful response

	Return type

	object

	Raises

	
	AuthorisationFailed – If the request is not authorised by appropriate token or credentials

	S3ObjectNotFound – If S3 object request fails because it does not exist

	S3ServerGlitch – If S3 object request fails because server is temporarily overloaded

	StoreUnavailable – If a general HTTP error occurred that is not ignored

	
get_chunk(array_name, slices, dtype)

	Get chunk from the store.

	Parameters

	
	array_name (string) – Identifier of parent array x of chunk

	slices (sequence of unit-stride slice objects) – Identifier of individual chunk, to be extracted as x[slices]

	dtype (numpy.dtype object or equivalent) – Data type of array x

	Returns

	chunk – Chunk as ndarray with dtype dtype and shape dictated by slices

	Return type

	numpy.ndarray object

	Raises

	
	TypeError – If slices is not a sequence of slice(start, stop, 1) objects

	chunkstore.BadChunk – If requested dtype does not match underlying parent array dtype
or stored buffer has wrong size / shape compared to slices

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	chunkstore.ChunkNotFound – If requested chunk was not found in store

	
create_array(array_name)

	See the docstring of ChunkStore.create_array().

	
put_chunk(array_name, slices, chunk)

	Put chunk into the store.

	Parameters

	
	array_name (string) – Identifier of parent array x of chunk

	slices (sequence of unit-stride slice objects) – Identifier of individual chunk, to be extracted as x[slices]

	chunk (numpy.ndarray object) – Chunk as ndarray with shape commensurate with slices

	Raises

	
	TypeError – If slices is not a sequence of slice(start, stop, 1) objects

	chunkstore.BadChunk – If the shape implied by slices does not match that of chunk

	chunkstore.StoreUnavailable – If interaction with chunk store failed (offline, bad auth, bad config)

	chunkstore.ChunkNotFound – If array_name is incompatible with store

	
mark_complete(array_name)

	Write a special object to indicate that array_name is finished.

This operation is idempotent.

The array_name need not correspond to any array written with
put_chunk(). This has no effect on katdal, but a producer can
call this method to provide a hint to a consumer that no further data
will be coming for this array. When arrays are arranged in a hierarchy,
a producer and consumer may agree to write a single completion marker
at a higher level of the hierarchy rather than one per actual array.

It is not necessary to call create_array() first; the
implementation will do so if appropriate.

The presence of this marker can be checked with is_complete().

	
is_complete(array_name)

	Check whether mark_complete() has been called for this array.

katdal.concatdata module

Class for concatenating visibility data sets.

	
exception katdal.concatdata.ConcatenationError

	Bases: Exception

Sequence of objects could not be concatenated due to incompatibility.

	
class katdal.concatdata.ConcatenatedLazyIndexer(indexers, transforms=None)

	Bases: katdal.lazy_indexer.LazyIndexer

Two-stage deferred indexer that concatenates multiple indexers.

This indexer concatenates a sequence of indexers along the first (i.e. time)
axis. The index specification is broken down into chunks along this axis,
sent to the applicable underlying indexers and the returned data are
concatenated again before returning it.

	Parameters

	
	indexers (sequence of LazyIndexer objects and/or arrays) – Sequence of indexers or raw arrays to be concatenated

	transforms (list of LazyTransform objects or None, optional) – Extra chain of transforms to be applied to data after final indexing

	
name

	Name of first non-empty indexer (or empty string otherwise)

	Type

	string

	Raises

	InvalidTransform – If transform chain does not obey restrictions on changing the data shape

	
katdal.concatdata.common_dtype(sensor_data_sequence)

	The dtype suitable to store all sensor data values in the given sequence.

This extracts the dtypes of a sequence of sensor data objects and finds the
minimal dtype to which all of them may be safely cast using NumPy type
promotion rules (which will typically be the dtype of a concatenation of
the values).

	Parameters

	sensor_data_sequence (sequence of extracted sensor data objects) – These objects may include numpy.ndarray and CategoricalData

	Returns

	dtype – The promoted dtype of the sequence, or None if sensor_data_sequence is empty

	Return type

	numpy.dtype object

	
class katdal.concatdata.ConcatenatedSensorGetter(data)

	Bases: katdal.sensordata.SensorGetter

The concatenation of multiple raw (uncached) sensor data sets.

This is a convenient container for returning raw (uncached) sensor data sets
from a ConcatenatedSensorCache object. It only accesses the
underlying data sets when explicitly asked to via the get() interface,
but provides quick access to metadata such as sensor name.

	Parameters

	data (sequence of SensorGetter) – Uncached sensor data

	
get()

	Retrieve the values from underlying storage.

	Returns

	values – Underlying data

	Return type

	SensorData

	
class katdal.concatdata.ConcatenatedSensorCache(caches, keep=None)

	Bases: katdal.sensordata.SensorCache

Sensor cache that is a concatenation of multiple underlying caches.

This concatenates a sequence of sensor caches along the time axis and makes
them appear like a single sensor cache. The combined cache contains a
superset of all actual and virtual sensors found in the underlying caches
and replaces any missing sensor data with dummy values.

	Parameters

	
	caches (sequence of SensorCache objects) – Sequence of underlying caches to be concatenated

	keep (sequence of bool, optional) – Default (global) time selection specification as boolean mask that will
be applied to sensor data (this can be disabled on data retrieval)

	
get(name, select=False, extract=True, **kwargs)

	Sensor values interpolated to correlator data timestamps.

Retrieve raw (uncached) or cached sensor data from each underlying cache
and concatenate the results along the time axis.

	Parameters

	
	name (string) – Sensor name

	select ({False, True}, optional) – True if preset time selection will be applied to returned data

	extract ({True, False}, optional) – True if sensor data should be extracted from store and cached

	kwargs (dict, optional) – Additional parameters are passed to underlying sensor caches

	Returns

	data – If extraction is disabled, this will be a SensorGetter object
for uncached sensors. If selection is enabled, this will be a 1-D
array of values, one per selected timestamp. If selection is
disabled, this will be a 1-D array of values (of the same length as
the timestamps attribute) for numerical data, and a
CategoricalData object for categorical data.

	Return type

	array or CategoricalData or SensorGetter object

	Raises

	KeyError – If sensor name was not found in cache and did not match virtual template

	
class katdal.concatdata.ConcatenatedDataSet(datasets)

	Bases: katdal.dataset.DataSet

Class that concatenates existing visibility data sets.

This provides a single DataSet interface to a list of concatenated data sets.
Where possible, identical targets, subarrays, spectral windows and
observation sensors are merged. For more information on attributes, see the
DataSet docstring.

	Parameters

	datasets (sequence of DataSet objects) – List of existing data sets

	
timestamps

	Visibility timestamps in UTC seconds since Unix epoch.

The timestamps are returned as an array indexer of float64, shape
(T,), with one timestamp per integration aligned with the integration
midpoint. To get the data array itself from the indexer x, do x[:]
or perform any other form of selection on it.

	
vis

	Complex visibility data as a function of time, frequency and baseline.

The visibility data are returned as an array indexer of complex64, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
selection on it.

	
weights

	Visibility weights as a function of time, frequency and baseline.

The weights data are returned as an array indexer of float32, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
flags

	Flags as a function of time, frequency and baseline.

The flags data are returned as an array indexer of bool, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
temperature

	Air temperature in degrees Celsius.

	
pressure

	Barometric pressure in millibars.

	
humidity

	Relative humidity as a percentage.

	
wind_speed

	Wind speed in metres per second.

	
wind_direction

	Wind direction as an azimuth angle in degrees.

katdal.dataset module

Base class for accessing a visibility data set.

	
exception katdal.dataset.WrongVersion

	Bases: Exception

Trying to access data using accessor class with the wrong version.

	
exception katdal.dataset.BrokenFile

	Bases: Exception

Data set could not be loaded because file is inconsistent or misses critical bits.

	
class katdal.dataset.Subarray(ants, corr_products)

	Bases: object

Subarray specification.

A subarray is determined by the specific correlation products produced by the
correlator and the antenna objects associated with the inputs found in the
correlation products.

	Parameters

	
	ants (sequence of katpoint.Antenna objects) – List of antenna objects, culled to contain only antennas found in
corr_products

	corr_products (sequence of (string, string) pairs, length B) – Correlation products as pairs of input labels, e.g. (‘ant1h’, ‘ant2v’),
exposed as an array of strings with shape (B, 2)

	
inputs

	List of correlator input labels found in corr_products, e.g. ‘ant1h’

	Type

	list of strings

	
katdal.dataset.parse_url_or_path(url_or_path)

	Parse URL into components, converting path to absolute file URL.

	Parameters

	url_or_path (string) – URL, or filesystem path if there is no scheme

	Returns

	url_parts – Components of the parsed URL (‘file’ scheme will have an absolute path)

	Return type

	urllib.parse.ParseResult

	
class katdal.dataset.DataSet(name, ref_ant='', time_offset=0.0, url='')

	Bases: object

Base class for accessing a visibility data set.

This provides a simple interface to a generic file (or files) containing
visibility data (both single-dish and interferometer data supported).
The data are not loaded into memory on opening the file, but are accessible
via properties after typically selecting a subset of the data. This allows
the reading of huge files.

	Parameters

	
	name (string) – Name / identifier of data set

	ref_ant (string, optional) – Name of reference antenna, used to partition data set into scans
(default is first antenna in use by script)

	time_offset (float, optional) – Offset to add to all correlator timestamps, in seconds

	url (string, optional) – Location of data set (either local filename or full URL accepted)

	
version

	Format version string

	Type

	string

	
observer

	Name of person that recorded the data set

	Type

	string

	
description

	Short description of the purpose of the data set

	Type

	string

	
experiment_id

	Experiment ID, a unique string used to link the data files of an
experiment together with blog entries, etc.

	Type

	string

	
obs_params

	Observation parameters, typically set in observation script

	Type

	dict mapping string to string or list of strings

	
obs_script_log

	Observation script output log (useful for debugging)

	Type

	list of strings

	
subarrays

	List of all subarrays in data set

	Type

	list of SubArray objects

	
subarray

	Index of currently selected subarray

	Type

	int

	
ants

	List of selected antennas

	Type

	list of katpoint.Antenna objects

	
inputs

	List of selected correlator input labels (‘ant1h’)

	Type

	array of strings

	
corr_products

	Array of selected correlation products as pairs of input labels
(e.g. [(‘ant1h’, ‘ant1h’), (‘ant1h’, ‘ant2h’)])

	Type

	array of strings, shape (B, 2)

	
receivers

	Identifier of the active receiver on each antenna

	Type

	dict mapping string to string or list of strings

	
spectral_windows

	List of all spectral windows in data set

	Type

	list of SpectralWindow objects

	
spw

	Index of currently selected spectral window

	Type

	int

	
channel_width

	Channel bandwidth of selected spectral window, in Hz

	Type

	float

	
freqs / channel_freqs

	Centre frequency of each selected channel, in Hz

	Type

	array of float, shape (F,)

	
channels

	Original channel indices of selected channels

	Type

	array of int, shape (F,)

	
dump_period

	Dump period, in seconds

	Type

	float

	
sensor

	Sensor cache

	Type

	SensorCache object

	
catalogue

	Catalogue of all targets / sources / fields in data set

	Type

	katpoint.Catalogue object

	
start_time

	Timestamp of start of first sample in file, in UT seconds since Unix epoch

	Type

	katpoint.Timestamp object

	
end_time

	Timestamp of end of last sample in file, in UT seconds since Unix epoch

	Type

	katpoint.Timestamp object

	
dumps

	Original dump indices of selected dumps

	Type

	array of int, shape (T,)

	
scan_indices

	List of currently selected scans as indices

	Type

	list of int

	
compscan_indices

	List of currently selected compound scans as indices

	Type

	list of int

	
target_indices

	List of currently selected targets as indices into catalogue

	Type

	list of int

	
target_projection

	Type of spherical projection for target coordinates

	Type

	{‘ARC’, ‘SIN’, ‘TAN’, ‘STG’, ‘CAR’}, optional

	
target_coordsys

	Spherical pointing coordinate system for target coordinates

	Type

	{‘azel’, ‘radec’}, optional

	
shape

	Shape of selected visibility data array, as (T, F, B)

	Type

	tuple of 3 ints

	
size

	Size of selected visibility data array, in bytes

	Type

	int

	
applycal_products

	List of calibration products that will be applied to data

	Type

	list of string

	
select(**kwargs)

	Select subset of data, based on time / frequency / corrprod filters.

This applies a set of selection criteria to the data set, which updates
the data set properties and attributes to match the selection. In other
words, the timestamps() and vis() methods will return the
selected subset of the data, while attributes such as ants,
channel_freqs and shape are updated. The sensor cache
will also return the selected subset of sensor data via the __getitem__
interface. This function returns nothing, but modifies the existing
data set in-place.

The selection criteria are divided into groups, based on whether they
affect the time, frequency or correlation product dimension:

* Time: `dumps`, `timerange`, `scans`, `compscans`, `targets`
* Frequency: `channels`, `freqrange`
* Correlation product: `corrprods`, `ants`, `inputs`, `pol`

The subarray and spw criteria are special, as they affect multiple
dimensions (time + correlation product and time + frequency,
respectively), are always active and are forced to be a single index.

If there are multiple criteria on the same dimension within a select()
call, they are ANDed together, while multiple items within the same
criterion (e.g. targets=[‘Hyd A’, ‘Vir A’]) are ORed together. When a
second select() call is done, all new selections replace previous
selections on the same dimension, while existing selections on other
dimensions are preserved. The reset parameter finetunes this behaviour.

If select() is called without any parameters the selection is
reset to the original data set.

In addition, the weights and flags criteria are lists of names that
select which weights and flags to include in the corresponding data set
property.

	Parameters

	
	strict ({True, False}, optional) – True if select() raises TypeError if it encounters an unknown kwarg

	dumps (int or slice or sequence of ints or sequence of bools, optional) – Select dumps by index, slice or boolean mask of length T
(keep dumps where mask is True)

	timerange (sequence of 2 katpoint.Timestamp objects) – or equivalent, optional
Select range of times between given start and end times

	scans (int or string or sequence, optional) – Select scans by index or state (or negate state by prepending ‘~’)

	compscans (int or string or sequence, optional) – Select compscans by index or label (or negate label by prepending ‘~’)

	targets (int or string or katpoint.Target object or sequence,) – optional
Select targets by index or name or description or object

	spw (int, optional) – Select spectral window by index (only one may be active)

	channels (int or slice or sequence of ints or sequence of bools, optional) – Select frequency channels by index, slice or boolean mask of length
F (keep channels where mask is True)

	freqrange (sequence of 2 floats, optional) – Select range of frequencies between start and end frequencies, in Hz

	subarray (int, optional) – Select subarray by index (only one may be active)

	corrprods (int or slice or sequence of ints or sequence of bools or) – sequence of string pairs or {‘auto’, ‘cross’}, optional
Select correlation products by index, slice or boolean mask of length
B (keep products where mask is True). Alternatively, select by
value via a sequence of string pairs, or select all autocorrelations
via ‘auto’ or all cross-correlations via ‘cross’.

	ants (string or katpoint.Antenna object or sequence, optional) – Select antennas by name or object. If all antennas specified are
prefaced by a ~ this is treated as a deselection and these antennas
are excluded.

	inputs (string or sequence of strings, optional) – Select inputs by label

	pol (string or sequence of strings) – {‘H’, ‘V’, ‘HH’, ‘VV’, ‘HV’, ‘VH’}, optional
Select polarisation terms

	weights ('all' or string or sequence of strings, optional) – List of names of weights to be multiplied together, as a sequence
or string of comma-separated names (combine all weights by default)

	flags ('all' or string or sequence of strings, optional) – List of names of flags that will be OR’ed together, as a sequence
or string of comma-separated names (use all flags by default). An
empty string or sequence discards all flags.

	reset ({'auto', '', 'T', 'F', 'B', 'TF', 'TB', 'FB', 'TFB'}, optional) – Remove existing selections on specified dimensions before applying
the new selections. The default ‘auto’ option clears those dimensions
that will be modified by the new selections and leaves the selections
on unaffected dimensions intact except if select is called without
any parameters, in which case all selections are cleared. By setting
reset to ‘’, new selections apply on top of existing selections.

	Raises

	
	TypeError – If a keyword argument is unknown and strict is enabled

	IndexError – If spw or subarray is out of range

	
scans()

	Generator that iterates through scans in data set.

This iterates through the currently selected list of scans, returning
the scan index, scan state and associated target object. In addition,
after each iteration the data set will reflect the scan selection, i.e.
the timestamps, visibilities, sensor values, etc. will be those of the
current scan. The scan selection applies on top of any existing
selection.

	Yields

	
	scan (int) – Scan index

	state (string) – Scan state

	target (katpoint.Target object) – Target associated with scan

	
compscans()

	Generator that iterates through compound scans in data set.

This iterates through the currently selected list of compound scans,
returning the compound scan index, label and the first associated target
object. In addition, after each iteration the data set will reflect the
compound scan selection, i.e. the timestamps, visibilities, sensor
values, etc. will be those of the current compound scan. The compound
scan selection applies on top of any existing selection.

	Yields

	
	compscan (int) – Compound scan index

	label (string) – Compound scan label

	target (katpoint.Target object) – First target associated with compound scan

	
timestamps

	Visibility timestamps in UTC seconds since Unix epoch.

The timestamps are returned as an array of float64, shape (T,), with
one timestamp per integration aligned with the integration midpoint.

	
vis

	Complex visibility data as a function of time, frequency and corrprod.

The visibility data are returned as an array of complex64, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The array always has all three dimensions, even for
scalar (single) values. The number of integrations T matches the
length of timestamps(), the number of frequency channels F
matches the length of freqs() and the number of correlation
products B matches the length of corr_products().

The sign convention of the imaginary part is consistent with an
electric field of \(e^{i(\omega t - jz)}\) i.e. phase that
increases with time.

	
weights

	Visibility weights as a function of time, frequency and baseline.

The weights data are returned as an array indexer of float32, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products().

	
flags

	Visibility flags as a function of time, frequency and baseline.

The flags data are returned as an array indexer of bool, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products().

	
temperature

	Air temperature in degrees Celsius.

	
pressure

	Barometric pressure in millibars.

	
humidity

	Relative humidity as a percentage.

	
wind_speed

	Wind speed in metres per second.

	
wind_direction

	Wind direction as an azimuth angle in degrees.

	
mjd

	Visibility timestamps in Modified Julian Days (MJD).

The timestamps are returned as an array of float64, shape (T,), with
one timestamp per integration aligned with the integration midpoint.

	
lst

	Local sidereal time at the reference antenna in hours.

The sidereal times are returned in an array of float, shape (T,).

	
az

	Azimuth angle of each dish in degrees.

The azimuth angles are returned in an array of float, shape (T, A).

	
el

	Elevation angle of each dish in degrees.

The elevation angles are returned in an array of float, shape (T, A).

	
ra

	Right ascension of the actual pointing of each dish in J2000 degrees.

The right ascensions are returned in an array of float, shape (T, A).

	
dec

	Declination of the actual pointing of each dish in J2000 degrees.

The declinations are returned in an array of float, shape (T, A).

	
parangle

	Parallactic angle of the actual pointing of each dish in degrees.

The parallactic angle is the position angle of the observer’s vertical
on the sky, measured from north toward east. This is the angle between
the great-circle arc connecting the celestial North pole to the dish
pointing direction, and the great-circle arc connecting the zenith above
the antenna to the pointing direction, or the angle between the
hour circle and vertical circle through the pointing direction.
It is returned as an array of float, shape (T, A).

	
target_x

	Target x coordinate of each dish in degrees.

The target coordinates are projections of the spherical coordinates of
the dish pointing direction to a plane with the target position at the
origin. The type of projection (e.g. ARC, SIN, etc.) and spherical
pointing coordinate system (e.g. azel or radec) can be set via the
target_projection and target_coordsys attributes,
respectively. The target x coordinates are returned as an array of
float, shape (T, A).

	
target_y

	Target y coordinate of each dish in degrees.

The target coordinates are projections of the spherical coordinates of
the dish pointing direction to a plane with the target position at the
origin. The type of projection (e.g. ARC, SIN, etc.) and spherical
pointing coordinate system (e.g. azel or radec) can be set via the
target_projection and target_coordsys attributes,
respectively. The target y coordinates are returned as an array of
float, shape (T, A).

	
u

	U coordinate for each correlation product in metres.

This calculates the u coordinate of the baseline vector of each
correlation product as a function of time while tracking the target.
It is returned as an array of float, shape (T, B). The sign
convention is \(u_1 - u_2\) for baseline (ant1, ant2).

	
v

	V coordinate for each correlation product in metres.

This calculates the v coordinate of the baseline vector of each
correlation product as a function of time while tracking the target.
It is returned as an array of float, shape (T, B). The sign
convention is \(v_1 - v_2\) for baseline (ant1, ant2).

	
w

	W coordinate for each correlation product in metres.

This calculates the w coordinate of the baseline vector of each
correlation product as a function of time while tracking the target.
It is returned as an array of float, shape (T, B).The sign
convention is \(w_1 - w_2\) for baseline (ant1, ant2).

katdal.datasources module

Various sources of correlator data and metadata.

	
exception katdal.datasources.DataSourceNotFound

	Bases: Exception

File associated with DataSource not found or server not responding.

	
class katdal.datasources.AttrsSensors(attrs, sensors)

	Bases: object

Metadata in the form of attributes and sensors.

	Parameters

	
	attrs (mapping from string to object) – Metadata attributes

	sensors (mapping from string to SensorGetter objects) – Metadata sensor cache mapping sensor names to raw sensor data

	
class katdal.datasources.DataSource(metadata, timestamps, data=None)

	Bases: object

A generic data source presenting both correlator data and metadata.

	Parameters

	
	metadata (AttrsSensors object) – Metadata attributes and sensors

	timestamps (array-like of float, length T) – Timestamps at centroids of visibilities in UTC seconds since Unix epoch

	data (VisFlagsWeights object, optional) – Correlator data (visibilities, flags and weights)

	
katdal.datasources.view_capture_stream(telstate, capture_block_id, stream_name)

	Create telstate view based on given capture block ID and stream name.

It constructs a view on telstate with at least the prefixes

	<capture_block_id>_<stream_name>

	<capture_block_id>

	<stream_name>

Additionally if there is a <stream_name>_inherit key, that stream is
added too (recursively).

	Parameters

	
	telstate (katsdptelstate.TelescopeState object) – Original telescope state

	capture_block_id (string) – Capture block ID

	stream_name (string) – Stream name

	Returns

	telstate – Telstate with a view that incorporates capture block, stream and combo

	Return type

	TelescopeState object

	
katdal.datasources.view_l0_capture_stream(telstate, capture_block_id=None, stream_name=None, **kwargs)

	Create telstate view based on auto-determined capture block ID and stream name.

This figures out the appropriate capture block ID and L0 stream name from
a capture-stream specific telstate, or uses the provided ones. It then
calls view_capture_capture() to generate a view.

	Parameters

	
	telstate (katsdptelstate.TelescopeState object) – Original telescope state

	capture_block_id (string, optional) – Specify capture block ID explicitly (detected otherwise)

	stream_name (string, optional) – Specify L0 stream name explicitly (detected otherwise)

	kwargs (dict, optional) – Extra keyword arguments, typically meant for other methods and ignored

	Returns

	
	telstate (TelstateToStr object) – Telstate with a view that incorporates capture block, stream and combo

	capture_block_id (string) – Actual capture block ID used

	stream_name (string) – Actual L0 stream name used

	Raises

	ValueError – If no capture block or L0 stream could be detected (with no override)

	
katdal.datasources.infer_chunk_store(url_parts, telstate, npy_store_path=None, s3_endpoint_url=None, array='correlator_data', **kwargs)

	Construct chunk store automatically from dataset URL and telstate.

	Parameters

	
	url_parts (urlparse.ParseResult object) – Parsed dataset URL

	telstate (TelstateToStr object) – Telescope state

	npy_store_path (string, optional) – Top-level directory of NpyFileChunkStore (overrides the default)

	s3_endpoint_url (string, optional) – Endpoint of S3 service, e.g. ‘http://127.0.0.1:9000’ (overrides default)

	array (string, optional) – Array within the bucket from which to determine the prefix

	kwargs (dict, optional) – Extra keyword arguments, typically meant for other methods and ignored

	Returns

	store – Chunk store for visibility data

	Return type

	katdal.ChunkStore object

	Raises

	
	KeyError – If telstate lacks critical keys

	katdal.chunkstore.StoreUnavailable – If the chunk store could not be constructed

	
class katdal.datasources.TelstateDataSource(telstate, capture_block_id, stream_name, chunk_store=None, timestamps=None, url='', upgrade_flags=True, van_vleck='off', preselect=None, **kwargs)

	Bases: katdal.datasources.DataSource

A data source based on katsdptelstate.TelescopeState.

It is assumed that the provided telstate already has the appropriate
views to find observation, stream and chunk store information. It typically
needs the following prefixes:

	<capture block ID>_<L0 stream>

	<capture block ID>

	<L0 stream>

	Parameters

	
	telstate (katsdptelstate.TelescopeState object) – Telescope state with appropriate views

	capture_block_id (string) – Capture block ID

	stream_name (string) – Name of the L0 stream

	chunk_store (katdal.ChunkStore object, optional) – Chunk store for visibility data (the default is no data - metadata only)

	timestamps (array of float, optional) – Visibility timestamps, overriding (or fixing) the ones found in telstate

	url (string, optional) – Location of the telstate source

	upgrade_flags (bool, optional) – Look for associated flag streams and use them if True (default)

	van_vleck ({'off', 'autocorr'}, optional) – Type of Van Vleck (quantisation) correction to perform

	preselect (dict, optional) – Subset of data to select. The keys in the dictionary correspond to the
keyword arguments of DataSet.select(), but with restrictions:

	Only channels and dumps can be specified.

	The values must be slices with unit step.

	kwargs (dict, optional) – Extra keyword arguments, typically meant for other methods and ignored

	Raises

	
	KeyError – If telstate lacks critical keys

	IndexError – If preselect does not meet the criteria above.

	
classmethod from_url(url, chunk_store='auto', **kwargs)

	Construct TelstateDataSource from URL or RDB filename.

The following URL styles are supported:

	Local RDB filename (no scheme): ‘1556574656/1556574656_sdp_l0.rdb’

	Archive: ‘https://archive/1556574656/1556574656_sdp_l0.rdb?token=<>’

	Redis server: ‘redis://cal5.sdp.mkat.karoo.kat.ac.za:31852’

	Parameters

	
	url (string) – URL or RDB filename serving as entry point to data set

	chunk_store (katdal.ChunkStore object, optional) – Chunk store for visibility data (obtained automatically by default,
or set to None for metadata-only data set)

	kwargs (dict, optional) – Extra keyword arguments passed to init, telstate view, chunk store init

	
katdal.datasources.open_data_source(url, **kwargs)

	Construct the data source described by the given URL.

katdal.flags module

Definitions of flag bits

katdal.h5datav1 module

Data accessor class for HDF5 files produced by Fringe Finder correlator.

	
class katdal.h5datav1.H5DataV1(filename, ref_ant='', time_offset=0.0, mode='r', **kwargs)

	Bases: katdal.dataset.DataSet

Load HDF5 format version 1 file produced by Fringe Finder correlator.

For more information on attributes, see the DataSet docstring.

	Parameters

	
	filename (string) – Name of HDF5 file

	ref_ant (string, optional) – Name of reference antenna, used to partition data set into scans
(default is first antenna in use)

	time_offset (float, optional) – Offset to add to all correlator timestamps, in seconds

	mode (string, optional) – HDF5 file opening mode (e.g. ‘r+’ to open file in write mode)

	kwargs (dict, optional) – Extra keyword arguments, typically meant for other formats and ignored

	
file

	Underlying HDF5 file, exposed via h5py interface

	Type

	h5py.File object

	
timestamps

	Visibility timestamps in UTC seconds since Unix epoch.

The timestamps are returned as an array indexer of float64, shape (T,),
with one timestamp per integration aligned with the integration
midpoint. To get the data array itself from the indexer x, do x[:]
or perform any other form of indexing on it.

	
vis

	Complex visibility data as a function of time, frequency and baseline.

The visibility data are returned as an array indexer of complex64, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The returned array always has all three dimensions,
even for scalar (single) values. The number of integrations T matches
the length of timestamps(), the number of frequency channels F
matches the length of freqs() and the number of correlation
products B matches the length of corr_products(). To get the
data array itself from the indexer x, do x[:] or perform any other
form of indexing on it. Only then will data be loaded into memory.

The sign convention of the imaginary part is consistent with an
electric field of \(e^{i(\omega t - jz)}\) i.e. phase that
increases with time.

	
weights

	Visibility weights as a function of time, frequency and baseline.

The weights data are returned as an array indexer of float32, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
flags

	Flags as a function of time, frequency and baseline.

The flags data are returned as an array indexer of bool, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
temperature

	Air temperature in degrees Celsius.

	
pressure

	Barometric pressure in millibars.

	
humidity

	Relative humidity as a percentage.

	
wind_speed

	Wind speed in metres per second.

	
wind_direction

	Wind direction as an azimuth angle in degrees.

katdal.h5datav2 module

Data accessor class for HDF5 files produced by KAT-7 correlator.

	
katdal.h5datav2.get_single_value(group, name)

	Return single value from attribute or dataset with given name in group.

If name is an attribute of the HDF5 group group, it is returned,
otherwise it is interpreted as an HDF5 dataset of group and the last value
of name is returned. This is meant to retrieve static configuration values
that potentially get set more than once during capture initialisation, but
then does not change during actual capturing.

	Parameters

	
	group (h5py.Group object) – HDF5 group to query

	name (string) – Name of HDF5 attribute or dataset to query

	Returns

	value – Attribute or last value of dataset

	Return type

	object

	
katdal.h5datav2.dummy_dataset(name, shape, dtype, value)

	Dummy HDF5 dataset containing a single value.

This creates a dummy HDF5 dataset in memory containing a single value. It
can have virtually unlimited size as the dataset is highly compressed.

	Parameters

	
	name (string) – Name of dataset

	shape (sequence of int) – Shape of dataset

	dtype (numpy.dtype object or equivalent) – Type of data stored in dataset

	value (object) – All elements in the dataset will equal this value

	Returns

	dataset – Dummy HDF5 dataset

	Return type

	h5py.Dataset object

	
class katdal.h5datav2.H5DataV2(filename, ref_ant='', time_offset=0.0, mode='r', quicklook=False, keepdims=False, **kwargs)

	Bases: katdal.dataset.DataSet

Load HDF5 format version 2 file produced by KAT-7 correlator.

For more information on attributes, see the DataSet docstring.

	Parameters

	
	filename (string) – Name of HDF5 file

	ref_ant (string, optional) – Name of reference antenna, used to partition data set into scans
(default is first antenna in use)

	time_offset (float, optional) – Offset to add to all correlator timestamps, in seconds

	mode (string, optional) – HDF5 file opening mode (e.g. ‘r+’ to open file in write mode)

	quicklook ({False, True}) – True if synthesised timestamps should be used to partition data set even
if real timestamps are irregular, thereby avoiding the slow loading of
real timestamps at the cost of slightly inaccurate label borders

	keepdims ({False, True}, optional) – Force vis / weights / flags to be 3-dimensional, regardless of selection

	kwargs (dict, optional) – Extra keyword arguments, typically meant for other formats and ignored

	
file

	Underlying HDF5 file, exposed via h5py interface

	Type

	h5py.File object

	
timestamps

	Visibility timestamps in UTC seconds since Unix epoch.

The timestamps are returned as an array indexer of float64, shape (T,),
with one timestamp per integration aligned with the integration
midpoint. To get the data array itself from the indexer x, do x[:]
or perform any other form of indexing on it.

	
vis

	Complex visibility data as a function of time, frequency and baseline.

The visibility data are returned as an array indexer of complex64, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The returned array always has all three dimensions,
even for scalar (single) values. The number of integrations T matches
the length of timestamps(), the number of frequency channels F
matches the length of freqs() and the number of correlation
products B matches the length of corr_products(). To get the
data array itself from the indexer x, do x[:] or perform any other
form of indexing on it. Only then will data be loaded into memory.

The sign convention of the imaginary part is consistent with an
electric field of \(e^{i(\omega t - jz)}\) i.e. phase that
increases with time.

	
weights

	Visibility weights as a function of time, frequency and baseline.

The weights data are returned as an array indexer of float32, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
flags

	Flags as a function of time, frequency and baseline.

The flags data are returned as an array indexer of bool, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
temperature

	Air temperature in degrees Celsius.

	
pressure

	Barometric pressure in millibars.

	
humidity

	Relative humidity as a percentage.

	
wind_speed

	Wind speed in metres per second.

	
wind_direction

	Wind direction as an azimuth angle in degrees.

katdal.h5datav3 module

Data accessor class for HDF5 files produced by RTS correlator.

	
katdal.h5datav3.dummy_dataset(name, shape, dtype, value)

	Dummy HDF5 dataset containing a single value.

This creates a dummy HDF5 dataset in memory containing a single value. It
can have virtually unlimited size as the dataset is highly compressed.

	Parameters

	
	name (string) – Name of dataset

	shape (sequence of int) – Shape of dataset

	dtype (numpy.dtype object or equivalent) – Type of data stored in dataset

	value (object) – All elements in the dataset will equal this value

	Returns

	dataset – Dummy HDF5 dataset

	Return type

	h5py.Dataset object

	
class katdal.h5datav3.H5DataV3(filename, ref_ant='', time_offset=0.0, mode='r', time_scale=None, time_origin=None, rotate_bls=False, centre_freq=None, band=None, keepdims=False, **kwargs)

	Bases: katdal.dataset.DataSet

Load HDF5 format version 3 file produced by RTS correlator.

For more information on attributes, see the DataSet docstring.

	Parameters

	
	filename (string) – Name of HDF5 file

	ref_ant (string, optional) – Name of reference antenna, used to partition data set into scans
(default is first antenna in use)

	time_offset (float, optional) – Offset to add to all correlator timestamps, in seconds

	mode (string, optional) – HDF5 file opening mode (e.g. ‘r+’ to open file in write mode)

	time_scale (float or None, optional) – Resynthesise timestamps using this scale factor

	time_origin (float or None, optional) – Resynthesise timestamps using this sync time / epoch

	rotate_bls ({False, True}, optional) – Rotate baseline label list to work around early RTS correlator bug

	centre_freq (float or None, optional) – Override centre frequency if provided, in Hz

	band (string or None, optional) – Override receiver band if provided (e.g. ‘l’) - used to find ND models

	keepdims ({False, True}, optional) – Force vis / weights / flags to be 3-dimensional, regardless of selection

	kwargs (dict, optional) – Extra keyword arguments, typically meant for other formats and ignored

	
file

	Underlying HDF5 file, exposed via h5py interface

	Type

	h5py.File object

	
stream_name

	Name of L0 data stream, for finding corresponding telescope state keys

	Type

	string

Notes

The timestamps can be resynchronised from the original sample counter
values by specifying time_scale and/or time_origin. The basic formula
is given by:

timestamp = sample_counter / time_scale + time_origin

	
timestamps

	Visibility timestamps in UTC seconds since Unix epoch.

The timestamps are returned as an array of float64, shape (T,),
with one timestamp per integration aligned with the integration
midpoint.

	
vis

	Complex visibility data as a function of time, frequency and baseline.

The visibility data are returned as an array indexer of complex64, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The returned array always has all three dimensions,
even for scalar (single) values. The number of integrations T matches
the length of timestamps(), the number of frequency channels F
matches the length of freqs() and the number of correlation
products B matches the length of corr_products(). To get the
data array itself from the indexer x, do x[:] or perform any other
form of indexing on it. Only then will data be loaded into memory.

The sign convention of the imaginary part is consistent with an
electric field of \(e^{i(\omega t - jz)}\) i.e. phase that
increases with time.

	
weights

	Visibility weights as a function of time, frequency and baseline.

The weights data are returned as an array indexer of float32, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
flags

	Flags as a function of time, frequency and baseline.

The flags data are returned as an array indexer of bool, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
temperature

	Air temperature in degrees Celsius.

	
pressure

	Barometric pressure in millibars.

	
humidity

	Relative humidity as a percentage.

	
wind_speed

	Wind speed in metres per second.

	
wind_direction

	Wind direction as an azimuth angle in degrees.

katdal.lazy_indexer module

Two-stage deferred indexer for objects with expensive __getitem__ calls.

	
katdal.lazy_indexer.dask_getitem(x, indices)

	Index a dask array, with N-D fancy index support and better performance.

This is a drop-in replacement for x[indices] that goes one further
by implementing “N-D fancy indexing” which is still unsupported in dask.
If indices contains multiple fancy indices, perform outer (oindex)
indexing. This behaviour deviates from NumPy, which performs the more
general (but also more obtuse) vectorized (vindex) indexing in this case.
See NumPy NEP 21 [http://www.numpy.org/neps/nep-0021-advanced-indexing.html], dask #433 [https://github.com/dask/dask/issues/433] and h5py #652 [https://github.com/h5py/h5py/issues/652] for more
details.

In addition, this optimises performance by culling unnecessary nodes from
the dask graph after indexing, which makes it cheaper to compute if only a
small piece of the graph is needed, and by collapsing fancy indices in
indices to slices where possible (which also implies oindex semantics).

	
exception katdal.lazy_indexer.InvalidTransform

	Bases: Exception

Transform changes data shape in unallowed way.

	
class katdal.lazy_indexer.LazyTransform(name=None, transform=<function LazyTransform.<lambda>>, new_shape=<function LazyTransform.<lambda>>, dtype=None)

	Bases: object

Transformation to be applied by LazyIndexer after final indexing.

A LazyIndexer potentially applies a chain of transforms to the
data after the final second-stage indexing is done. These transforms are
restricted in their capabilities to simplify the indexing process.
Specifically, when it comes to the data shape, transforms may only:

- add dimensions at the end of the data shape, or
- drop dimensions at the end of the data shape.

The preserved dimensions are not allowed to change their shape or
interpretation so that the second-stage indexing matches the first-stage
indexing on these dimensions. The data type (aka dtype) is allowed to
change.

	Parameters

	
	name (string or None, optional) – Name of transform

	transform (function, signature data = f(data, keep), optional) – Transform to apply to data (keep is user-specified second-stage index)

	new_shape (function, signature new_shape = f(old_shape), optional) – Function that predicts data array shape tuple after first-stage indexing
and transformation, given its original shape tuple as input.
Restrictions apply as described above.

	dtype (numpy.dtype object or equivalent or None, optional) – Type of output array after transformation (None if same as input array)

	
class katdal.lazy_indexer.LazyIndexer(dataset, keep=slice(None, None, None), transforms=None)

	Bases: object

Two-stage deferred indexer for objects with expensive __getitem__ calls.

This class was originally designed to extend and speed up the indexing
functionality of HDF5 datasets as found in h5py, but works on any
equivalent object (defined as any object with shape, dtype and
__getitem__ members) where a call to __getitem__ may be very expensive.
The following discussion focuses on the HDF5 use case as the main example.

Direct extraction of a subset of an HDF5 dataset via the __getitem__
interface (i.e. dataset[index]) has a few issues:

	Data access can be very slow (or impossible) if a very large dataset is
fully loaded into memory and then indexed again at a later stage

	Advanced indexing (via boolean masks or sequences of integer indices) is
only supported on a single dimension in the current version of h5py (2.0)

	Even though advanced indexing has limited support, simple indexing (via
single integer indices or slices) is frequently much faster.

This class wraps an h5py.Dataset or equivalent object and exposes a
new __getitem__ interface on it. It efficiently composes two stages of
indexing: a first stage specified at object instantiation time and a second
stage that applies on top of the first stage when __getitem__ is called on
this object. The data are only loaded after the combined index is determined,
addressing issue 1.

Furthermore, advanced indexing is allowed on any dimension by decomposing
the selection as a series of slice selections covering contiguous segments
of the dimension to alleviate issue 2. Finally, this also allows faster
data retrieval by extracting a large slice from the HDF5 dataset and then
performing advanced indexing on the resulting numpy.ndarray object
instead, in response to issue 3.

The keep parameter of the __init__() and __getitem__() methods
accepts a generic index or slice specification, i.e. anything that would be
accepted by the __getitem__() method of a numpy.ndarray of
the same shape as the dataset. This could be a single integer index, a
sequence of integer indices, a slice object (representing the colon operator
commonly used with __getitem__, e.g. representing x[1:10:2] as
x[slice(1,10,2)]), a sequence of booleans as a mask, or a tuple containing
any number of these (typically one index item per dataset dimension). Any
missing dimensions will be fully selected, and any extra dimensions will
be ignored.

	Parameters

	
	dataset (h5py.Dataset object or equivalent) – Underlying dataset or array object on which lazy indexing will be done.
This can be any object with shape, dtype and __getitem__ members.

	keep (NumPy index expression, optional) – First-stage index as a valid index or slice specification
(supports arbitrary slicing or advanced indexing on any dimension)

	transforms (list of LazyTransform objects or None, optional) – Chain of transforms to be applied to data after final indexing. The
chain as a whole may only add or drop dimensions at the end of data
shape without changing the preserved dimensions.

	
name

	Name of HDF5 dataset (or empty string for unnamed ndarrays, etc.)

	Type

	string

	Raises

	InvalidTransform – If transform chain does not obey restrictions on changing the data shape

	
shape

].shape``.

	Type

	Shape of data array after first-stage indexing and transformation, i.e. ``self[

	
dtype

].dtype``.

	Type

	Type of data array after transformation, i.e. ``self[

	
class katdal.lazy_indexer.DaskLazyIndexer(dataset, keep=(), transforms=())

	Bases: object

Turn a dask Array into a LazyIndexer by computing it upon indexing.

The LazyIndexer wraps an underlying dataset in the form of a dask Array.
Upon first use, it applies a stored first-stage selection (keep) to the
array, followed by a series of transforms. All of these actions are lazy
and only update the dask graph of the dataset. Since these updates are
computed only on first use, there is minimal cost in constructing an
instance and immediately throwing it away again.

Second-stage selection occurs via a __getitem__() call on this
object, which also triggers dask computation to return the final
numpy.ndarray output. Both selection steps follow outer indexing
(“oindex”) semantics, by indexing each dimension / axis separately.

DaskLazyIndexers can also index other DaskLazyIndexers, which allows them
to share first-stage selections and/or transforms, and to construct nested
or hierarchical indexers.

	Parameters

	
	dataset (dask.Array or DaskLazyIndexer) – The full dataset, from which a subset is chosen by keep

	keep (NumPy index expression, optional) – Index expression describing first-stage selection (e.g. as applied by
katdal.DataSet.select()), with oindex semantics

	transforms (sequence of function, signature array = f(array), optional) – Transformations that are applied after indexing by keep but
before indexing on this object. Each transformation is a callable
that takes a dask array and returns another dask array.

	
name

	The name of the (full) underlying dataset, useful for reporting

	Type

	str

	
dataset

	The dask array that is accessed by indexing (after applying keep and
transforms). It can be used directly to perform dask computations.

	Type

	dask.Array

	
transforms

	Transformations that are applied after first-stage indexing.

	
dataset

	Array after first-stage indexing and transformation.

	
classmethod get(arrays, keep, out=None)

	Extract several arrays from the underlying dataset.

This is a variant of __getitem__() that pulls from several arrays
jointly. This can be significantly more efficient if intermediate dask
nodes can be shared.

	Parameters

	
	arrays (list of DaskLazyIndexer) – Arrays to index

	keep (NumPy index expression) – Second-stage index as a valid index or slice specification
(supports arbitrary slicing or advanced indexing on any dimension)

	out (list of np.ndarray) – If specified, output arrays in which to store results. It must be
the same length as arrays and each array must have the
appropriate shape and dtype.

	Returns

	out – Extracted output array (computed from the final dask version)

	Return type

	sequence of numpy.ndarray

	
shape

	Shape of array after first-stage indexing and transformation.

	
dtype

	Data type of array after first-stage indexing and transformation.

katdal.ms_async module

katdal.ms_extra module

katdal.sensordata module

Container that stores cached (interpolated) and uncached (raw) sensor data.

	
class katdal.sensordata.SensorData(name, timestamp, value, status=None)

	Bases: object

Raw (uninterpolated) sensor values.

This is a simple struct that holds timestamps, values, and optionally
status.

	Parameters

	
	name (string) – Sensor name

	timestamp (np.ndarray) – Array of timestamps

	value (np.ndarray) – Array of values (wrapped in ComparableArrayWrapper if necessary)

	status (np.ndarray, optional) – Array of sensor statuses

	
class katdal.sensordata.SensorGetter(name)

	Bases: object

Raw (uninterpolated) sensor data placeholder.

This is an abstract lazy interface that provides a SensorData
object on request but does not store values itself. Subclasses must
implement get() to retrieve values from underlying storage. They
should not cache the results.

Where possible, object-valued sensors (including sensors with ndarrays as
values) will have values wrapped by ComparableArrayWrapper.

	Parameters

	name (string) – Sensor name

	
get()

	Retrieve the values from underlying storage.

	Returns

	values – Underlying data

	Return type

	SensorData

	
class katdal.sensordata.SimpleSensorGetter(name, timestamp, value, status=None)

	Bases: katdal.sensordata.SensorGetter

Raw sensor data held in memory.

This is a simple wrapper for SensorData that implements the
SensorGetter interface.

	
get()

	Retrieve the values from underlying storage.

	Returns

	values – Underlying data

	Return type

	SensorData

	
class katdal.sensordata.RecordSensorGetter(data, name=None)

	Bases: katdal.sensordata.SensorGetter

Raw (uninterpolated) sensor data in record array form.

This is a wrapper for uninterpolated sensor data which resembles a record
array with fields ‘timestamp’, ‘value’ and optionally ‘status’. This is
also the typical format of HDF5 datasets used to store sensor data.

Technically, the data is interpreted as a NumPy “structured” array, which
is a simpler version of a recarray that only provides item-style access to
fields and not attribute-style access.

Object-valued sensors are not treated specially in this class, as it is
assumed that any wrapping already occurred in the construction of the
recarray-like data input and will be reflected in its dtype. The original
HDF5 sensor datasets also did not contain any objects as they only support
standard KATCP types, so there was no need for wrapping there.

	Parameters

	
	data (recarray-like, with fields 'timestamp', 'value' and optionally 'status') – Uninterpolated sensor data as structured array or equivalent (such as
an h5py.Dataset)

	name (string or None, optional) – Sensor name (assumed to be data.name by default, if it exists)

	
get()

	Extract timestamp, value and status of each sensor data point.

Values are passed through to_str().

	
katdal.sensordata.to_str(value)

	Convert string-likes to the native string type.

Bytes are decoded to str, with surrogateencoding error handler.

Tuples, lists, dicts and numpy arrays are processed recursively, with the
exception that numpy structured types with string or object fields won’t
be handled.

	
katdal.sensordata.telstate_decode(raw, no_decode=())

	Load a katsdptelstate-encoded value that might be wrapped in np.void or
np.ndarray.

The np.void/np.ndarray wrapping is needed to pass variable-length binary
strings through h5py.

If the value is a string and is in no_decode, it is returned verbatim.
This is for backwards compatibility with older files that didn’t use
any encoding at all.

The return value is also passed through to_str().

	
class katdal.sensordata.H5TelstateSensorGetter(data, name=None)

	Bases: katdal.sensordata.RecordSensorGetter

Raw (uninterpolated) sensor data in HDF5 TelescopeState recarray form.

This wraps the telstate sensors stored in recent HDF5 files. It differs
in two ways from the normal HDF5 sensors: no ‘status’ field and values
encoded by katsdptelstate.

TODO: This is a temporary fix to get at missing sensors in telstate and
should be replaced by a proper wrapping of any telstate object.

Object-valued sensors (including sensors with ndarrays as values) will have
its values wrapped by ComparableArrayWrapper.

	Parameters

	
	data (recarray-like, with fields ('timestamp', 'value')) – Uninterpolated sensor data as structured array or equivalent (such as
an h5py.Dataset)

	name (string or None, optional) – Sensor name (assumed to be data.name by default, if it exists)

	
get()

	Extract timestamp and value of each sensor data point.

	
class katdal.sensordata.TelstateToStr(telstate)

	Bases: object

Wrap an existing telescope state and pass return values through to_str()

	
wrapped

	

	
view(name, add_separator=True, exclusive=False)

	

	
root()

	

	
get_message(channel=None)

	

	
get(key, default=None, return_encoded=False)

	

	
get_range(key, st=None, et=None, include_previous=None, include_end=False, return_encoded=False)

	

	
get_indexed(key, sub_key, default=None, return_encoded=False)

	

	
class katdal.sensordata.TelstateSensorGetter(telstate, name)

	Bases: katdal.sensordata.SensorGetter

Raw (uninterpolated) sensor data stored in original TelescopeState.

This wraps sensor data stored in a TelescopeState object. The data is
only read out on item access.

Object-valued sensors (including sensors with ndarrays as values) will have
their values wrapped by ComparableArrayWrapper.

	Parameters

	
	telstate (katsdptelstate.TelescopeState object) – Telescope state object

	name (string) – Sensor name, also used as telstate key

	Raises

	KeyError – If sensor name is not found in telstate or it is an attribute instead

	
get()

	Retrieve the values from underlying storage.

	Returns

	values – Underlying data

	Return type

	SensorData

	
katdal.sensordata.get_sensor_from_katstore(store, name, start_time, end_time)

	Get raw sensor data from katstore (CAM’s central sensor database).

	Parameters

	
	store (string) – Hostname / endpoint of katstore webserver speaking katstore64 API

	name (string) – Sensor name (the normalised / escaped version with underscores)

	end_time (start_time,) – Time range for sensor records as UTC seconds since Unix epoch

	Returns

	data – Retrieved sensor data with ‘timestamp’, ‘value’ and ‘status’ fields

	Return type

	RecordSensorGetter object

	Raises

	
	ConnectionError – If this cannot connect to the katstore server

	RuntimeError – If connection succeeded but interaction with katstore64 API failed

	KeyError – If the sensor was not found in the store or it has no data in time range

	
katdal.sensordata.dummy_sensor_getter(name, value=None, dtype=<class 'numpy.float64'>, timestamp=0.0)

	Create a SensorGetter object with a single default value based on type.

This creates a dummy SimpleSensorGetter object based on a default
value or a type, for use when no sensor data are available, but filler data
is required (e.g. when concatenating sensors from different datasets and
one dataset lacks the sensor). The dummy dataset contains a single data
point with the filler value and a configurable timestamp (defaulting to
way back). If the filler value is an object it will be wrapped in a
ComparableArrayWrapper to match the behaviour of other
SensorGetter objects.

	Parameters

	
	name (string) – Sensor name

	value (object, optional) – Filler value (default is None, meaning dtype will be used instead)

	dtype (numpy.dtype object or equivalent, optional) – Desired sensor data type, used if no explicit value is given

	timestamp (float, optional) – Time when dummy value occurred (default is way back)

	Returns

	data – Dummy sensor data object with ‘timestamp’ and ‘value’ fields

	Return type

	SimpleSensorGetter object, shape (1,)

	
katdal.sensordata.remove_duplicates_and_invalid_values(sensor)

	Remove duplicate timestamps and invalid values from sensor data.

This sorts the ‘timestamp’ field of the sensor record array and removes any
duplicate values, updating the corresponding ‘value’ and ‘status’ fields as
well. If more than one timestamp has the same value, the value and status
of the last of these timestamps are selected. If the values differ for the
same timestamp, a warning is logged (and the last one is still picked).

In addition, if there is a ‘status’ field, get rid of data with a status
other than ‘nominal’, ‘warn’ or ‘error’, which indicates that the sensor
could not be read and the corresponding value will therefore be invalid.
Afterwards, remove the ‘status’ field from the data as this is the only
place it plays a role.

	Parameters

	sensor (SensorData object, length N) – Raw sensor dataset.

	Returns

	clean_sensor – Sensor data with duplicate timestamps and invalid values removed
(M <= N), and only ‘timestamp’ and ‘value’ attributes left.

	Return type

	SensorData object, length M

	
class katdal.sensordata.SensorCache(cache, timestamps, dump_period, keep=slice(None, None, None), props=None, virtual={}, aliases={}, store=None)

	Bases: collections.abc.MutableMapping

Container for sensor data providing name lookup, interpolation and caching.

Sensor data is defined as a one-dimensional time series of values. The
values may be numerical or non-numerical (categorical), and the timestamps
are monotonically increasing but not necessarily regularly spaced.

A sensor cache stores sensor data with dictionary-like lookup based on
the sensor name. Since the extraction of sensor data from e.g. HDF5 files
may be costly, the data is first represented in uncached (raw) form as
SensorGetter objects, which typically wrap the underlying sensor
HDF5 datasets. After extraction, the sensor data are stored either as
a NumPy array (for numerical data) or as a CategoricalData object
(for non-numerical data).

The sensor cache stores a timestamp array (or indexer) onto which the sensor
data will be interpolated, together with a boolean selection mask that
selects a subset of the interpolated data as the final output. Interpolation
is linear for numerical data and zeroth-order for non-numerical data. Both
extraction and selection may be enabled or disabled through the appropriate
use of the two main interfaces that retrieve sensor data:

	The __getitem__ interface (i.e. cache[sensor]) presents a simple
high-level interface to the end user that always extracts the sensor data
and selects the requested subset from it. In addition, the return type is
always a NumPy array.

	The get() interface (i.e. cache.get(sensor)) is an advanced interface
for library builders that provides full control of the extraction process
via sensor properties. It does not apply selection by default, as this
is more convenient for library routines.

In addition, the sensor cache may contain virtual sensors which calculate
their values based on the values of other sensors. They are identified by
pattern templates that potentially match multiple sensor names.

	Parameters

	
	cache (mapping from string to SensorGetter objects) – Initial sensor cache mapping sensor names to raw (uncached) sensor data

	timestamps (array of float) – Correlator data timestamps onto which sensor values will be interpolated,
as UTC seconds since Unix epoch

	dump_period (float) – Dump period, in seconds

	keep (int or slice or sequence of int or sequence of bool, optional) – Default time selection specification that will be applied to sensor data
(this can be disabled on data retrieval)

	props (dict, optional) – Default properties that govern how sensor data are interpreted and
interpolated (this can be overridden on data retrieval). Can use *
as a wildcard anywhere in the key.

	virtual (dict mapping string to function, optional) – Virtual sensors, specified as a pattern matching the virtual sensor name
and a corresponding function that will create the sensor (together with
any associated virtual sensors)

	aliases (dict mapping string to string, optional) – Alternate names for sensors, as a dictionary mapping each alias to the
original sensor name suffix. This will create additional sensors with
the aliased names and the data of the original sensors.

	store (string, optional) – Hostname / endpoint of katstore webserver to access additional sensors

	
add_aliases(alias, original)

	Add alternate names / aliases for sensors.

Search for sensors with names ending in the original suffix and form
a corresponding alternate name by replacing original with alias.
The new aliased sensors will re-use the data of the original sensors.

	Parameters

	
	alias (string) – The new sensor name suffix that replaces original

	original (string) – Sensors with names that end in this will get aliases

	
get(name, select=False, extract=True, **kwargs)

	Sensor values interpolated to correlator data timestamps.

Time selection is disabled by default, as this is a more advanced data
extraction method typically called by library routines that want to
operate on the full array of sensor values. For additional allowed
parameters when extracting categorical data, see the docstring for
sensor_to_categorical().

	Parameters

	
	name (string) – Sensor name

	select ({False, True}, optional) – True if preset time selection will be applied to interpolated data

	extract ({True, False}, optional) – True if sensor data should be extracted, interpolated and cached

	categorical ({None, True, False}, optional) – Interpret sensor data as categorical or numerical (by default, data
of type float is numerical and of any other type is categorical)

	kwargs (dict, optional) – Additional parameters are passed to sensor_to_categorical()

	Returns

	data – If extraction is disabled, this will be a SensorGetter object
for uncached sensors. If selection is enabled, this will be a 1-D
array of values, one per selected timestamp. If selection is
disabled, this will be a 1-D array of values (of the same length as
the timestamps attribute) for numerical data, and a
CategoricalData object for categorical data.

	Return type

	array or CategoricalData or SensorGetter object

	Raises

	
	ValueError – If select=True and extract=False, as select requires interpolation

	KeyError – If sensor name was not found in cache and did not match virtual template

	
get_with_fallback(sensor_type, names)

	Sensor values interpolated to correlator data timestamps.

Get data for a type of sensor that may have one of several names.
Try each name in turn until something works, or crash sensibly.

	Parameters

	
	sensor_type (string) – Name of sensor class / type, used for informational purposes only

	names (sequence of strings) – Sensor names to try until one of them provides data

	Returns

	sensor_data – Interpolated sensor data as 1-D array, one value per selected timestamp

	Return type

	array

	Raises

	KeyError – If none of the sensor names were found in the cache

katdal.spectral_window module

	
class katdal.spectral_window.SpectralWindow(centre_freq, channel_width, num_chans, product=None, sideband=-1, band='L', bandwidth=None)

	Bases: object

Spectral window specification.

A spectral window is determined by the number of frequency channels produced
by the correlator and their corresponding centre frequencies, as well as the
channel width. The channels are assumed to be regularly spaced and to be the
result of either lower-sideband downconversion (channel frequencies
decreasing with channel index) or upper-sideband downconversion (frequencies
increasing with index). For further information the receiver band and
correlator product names are also available.

Warning

Instances should be treated as immutable. Changing the attributes will
lead to inconsistencies between them.

	Parameters

	
	centre_freq (float) – Centre frequency of spectral window, in Hz

	channel_width (float) – Bandwidth of each frequency channel, in Hz

	num_chans (int) – Number of frequency channels

	product (string, optional) – Name of data product / correlator mode

	sideband ({-1, +1}, optional) – Type of downconversion (-1 => lower sideband, +1 => upper sideband)

	band ({'L', 'UHF', 'S', 'X', 'Ku'}, optional) – Name of receiver / band

	bandwidth (float, optional) – The bandwidth of the whole spectral window, in Hz. If specified,
channel_width is ignored and computed from the bandwidth. If not
specified, bandwidth is computed from the channel width. Specifying
this is a good idea if the channel width cannot be exactly represented
in floating point.

	
channel_freqs

	Centre frequency of each frequency channel (assuming LSB mixing), in Hz

	Type

	array of float, shape (F,)

	
channel_freqs

	

	
subrange(first, last)

	Get a new SpectralWindow representing a subset of the channels.

The returned SpectralWindow covers the same frequencies as
channels [first, last) of the original.

	Raises

	IndexError – If [first, last) is not a (non-empty) subinterval of the channels

	
rechannelise(num_chans)

	Get a new SpectralWindow with a different number of channels.

The returned SpectralWindow covers the same frequencies as the
original, but dividing the bandwidth into a different number of
channels.

katdal.visdatav4 module

Data accessor class for data and metadata from various sources in v4 format.

	
class katdal.visdatav4.VisibilityDataV4(source, ref_ant='', time_offset=0.0, applycal='', gaincal_flux={}, sensor_store=None, preselect=None, **kwargs)

	Bases: katdal.dataset.DataSet

Access format version 4 visibility data and metadata.

For more information on attributes, see the DataSet docstring.

	Parameters

	
	source (DataSource object) – Correlator data (visibilities, flags and weights) and metadata

	ref_ant (string, optional) – Name of reference antenna, used to partition data set into scans,
to determine the targets and as antenna for the data set catalogue
(no relation to the calibration reference antenna…). The default
is to use the observation activity sensor for scan partitioning,
the CBF target and the array reference position as catalogue antenna.

	time_offset (float, optional) – Offset to add to all correlator timestamps, in seconds

	applycal (string or sequence of strings, optional) – List of names of calibration products to apply to vis/weights/flags,
as a sequence or string of comma-separated names. An empty string or
sequence means no calibration will be applied (the default for now),
while the keyword ‘all’ means all available products will be applied.
NB In future the default will probably change to ‘all’.
NB This is still very much an experimental feature…

	gaincal_flux (dict mapping string to float, optional) – Flux density (in Jy) per gaincal target name, used to flux calibrate
the “G” product, overriding the measured flux produced by cal pipeline
(if available). A value of None disables flux calibration.

	sensor_store (string, optional) – Hostname / endpoint of katstore webserver to access additional sensors

	preselect (dict, optional) – Subset of the data to select. See TelstateDataSource for
details. This selection is permanent, and further selections made
by DataSet.select() are relative to this subset.

	kwargs (dict, optional) – Extra keyword arguments, typically meant for other formats and ignored

	
timestamps

	Visibility timestamps in UTC seconds since Unix epoch.

The timestamps are returned as an array of float64, shape (T,),
with one timestamp per integration aligned with the integration
midpoint.

	
vis

	Complex visibility data as a function of time, frequency and baseline.

The visibility data are returned as an array indexer of complex64, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The returned array always has all three dimensions,
even for scalar (single) values. The number of integrations T matches
the length of timestamps(), the number of frequency channels F
matches the length of freqs() and the number of correlation
products B matches the length of corr_products(). To get the
data array itself from the indexer x, do x[:] or perform any other
form of indexing on it. Only then will data be loaded into memory.

The sign convention of the imaginary part is consistent with an
electric field of \(e^{i(\omega t - jz)}\) i.e. phase that
increases with time.

	
weights

	Visibility weights as a function of time, frequency and baseline.

The weights data are returned as an array indexer of float32, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
flags

	Flags as a function of time, frequency and baseline.

The flags data are returned as an array indexer of bool, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
raw_flags

	Raw flags as a function of time, frequency and baseline.

The flags data are returned as an array indexer of uint8, shape
(T, F, B), with time along the first dimension, frequency along the
second dimension and correlation product (“baseline”) index along the
third dimension. The number of integrations T matches the length of
timestamps(), the number of frequency channels F matches the
length of freqs() and the number of correlation products B
matches the length of corr_products(). To get the data array
itself from the indexer x, do x[:] or perform any other form of
indexing on it. Only then will data be loaded into memory.

	
excision

	Excision as a function of time, frequency and baseline.

The fraction of each visibility that has been excised in the SDP ingest
pipeline is returned as an array indexer of bool, shape (T, F, B)
with time along the first dimension, frequency along the second dimension
and correlation product (“baseline”) index along the third dimension.
The number of integrations T matches the length of timestamps(),
the number of frequency channels F matches the length of freqs()
and the number of correlation products B matches the length of
corr_products(). To get the data array itself from the indexer x,
do x[:] or perform any other form of indexing on it. Only then will
data be loaded into memory.

	
temperature

	Air temperature in degrees Celsius.

	
pressure

	Barometric pressure in millibars.

	
humidity

	Relative humidity as a percentage.

	
wind_speed

	Wind speed in metres per second.

	
wind_direction

	Wind direction as an azimuth angle in degrees.

Module contents

Data access library for data sets in the MeerKAT Visibility Format (MVF).

	
katdal.open(filename, ref_ant='', time_offset=0.0, **kwargs)

	Open data file(s) with loader of the appropriate version.

	Parameters

	
	filename (string or sequence of strings) – Data file name or list of file names

	ref_ant (string, optional) – Name of reference antenna (default is first antenna in use)

	time_offset (float, optional) – Offset to add to all timestamps, in seconds

	kwargs (dict, optional) – Extra keyword arguments are passed on to underlying accessor class:

	mode (string, optional)

	[H5DataV*] File opening mode (e.g. ‘r+’ to open file in write mode)

	quicklook (bool)

	[H5DataV2] True if synthesised timestamps should be used to
partition data set even if real timestamps are irregular, thereby
avoiding the slow loading of real timestamps at the cost of
slightly inaccurate label borders

See the documentation of VisibilityDataV4 for the keywords
it accepts.

	Returns

	data – Object providing DataSet interface to file(s)

	Return type

	DataSet object

	
katdal.get_ants(filename)

	Quick look function to get the list of antennas in a data file.

	Parameters

	filename (string) – Data file name

	Returns

	antennas

	Return type

	list of katpoint.Antenna objects

	
katdal.get_targets(filename)

	Quick look function to get the list of targets in a data file.

	Parameters

	filename (string) – Data file name

	Returns

	targets – All targets in file

	Return type

	katpoint.Catalogue object

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 katdal	

 	
 	
 katdal.applycal	

 	
 	
 katdal.averager	

 	
 	
 katdal.categorical	

 	
 	
 katdal.chunkstore	

 	
 	
 katdal.chunkstore_dict	

 	
 	
 katdal.chunkstore_npy	

 	
 	
 katdal.chunkstore_s3	

 	
 	
 katdal.concatdata	

 	
 	
 katdal.dataset	

 	
 	
 katdal.datasources	

 	
 	
 katdal.flags	

 	
 	
 katdal.h5datav1	

 	
 	
 katdal.h5datav2	

 	
 	
 katdal.h5datav3	

 	
 	
 katdal.lazy_indexer	

 	
 	
 katdal.sensordata	

 	
 	
 katdal.spectral_window	

 	
 	
 katdal.visdatav4	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (katdal.categorical.CategoricalData method)

 	add_aliases() (katdal.sensordata.SensorCache method)

 	add_applycal_sensors() (in module katdal.applycal)

 	add_unmatched() (katdal.categorical.CategoricalData method)

 	align() (katdal.categorical.CategoricalData method)

 	ants (katdal.dataset.DataSet attribute)

 	apply_flags_correction (in module katdal.applycal)

 	
 	apply_vis_correction (in module katdal.applycal)

 	apply_weights_correction (in module katdal.applycal)

 	applycal_products (katdal.dataset.DataSet attribute)

 	AttrsSensors (class in katdal.datasources)

 	AuthorisationFailed

 	average_visibilities() (in module katdal.averager)

 	az (katdal.dataset.DataSet attribute)

B

 	
 	BadChunk

 	
 	BrokenFile

C

 	
 	calc_bandpass_correction() (in module katdal.applycal)

 	calc_correction() (in module katdal.applycal)

 	calc_correction_per_corrprod() (in module katdal.applycal)

 	calc_delay_correction() (in module katdal.applycal)

 	calc_gain_correction() (in module katdal.applycal)

 	calibrate_flux() (in module katdal.applycal)

 	catalogue (katdal.dataset.DataSet attribute)

 	CategoricalData (class in katdal.categorical)

 	channel_freqs (katdal.spectral_window.SpectralWindow attribute), [1]

 	channel_width (katdal.dataset.DataSet attribute)

 	channels (katdal.dataset.DataSet attribute)

 	chunk_id_str() (katdal.chunkstore.ChunkStore class method)

 	chunk_metadata() (katdal.chunkstore.ChunkStore class method)

 	ChunkNotFound

 	ChunkStore (class in katdal.chunkstore)

 	ChunkStoreError

 	
 	common_dtype() (in module katdal.concatdata)

 	ComparableArrayWrapper (class in katdal.categorical)

 	complex_interp() (in module katdal.applycal)

 	compscan_indices (katdal.dataset.DataSet attribute)

 	compscans() (katdal.dataset.DataSet method)

 	concatenate_categorical() (in module katdal.categorical)

 	ConcatenatedDataSet (class in katdal.concatdata)

 	ConcatenatedLazyIndexer (class in katdal.concatdata)

 	ConcatenatedSensorCache (class in katdal.concatdata)

 	ConcatenatedSensorGetter (class in katdal.concatdata)

 	ConcatenationError

 	corr_products (katdal.dataset.DataSet attribute)

 	CorrectionParams (class in katdal.applycal)

 	create_array() (katdal.chunkstore.ChunkStore method)

 	(katdal.chunkstore_dict.DictChunkStore method)

 	(katdal.chunkstore_npy.NpyFileChunkStore method)

 	(katdal.chunkstore_s3.S3ChunkStore method)

D

 	
 	dask_getitem() (in module katdal.lazy_indexer)

 	DaskLazyIndexer (class in katdal.lazy_indexer)

 	DataSet (class in katdal.dataset)

 	dataset (katdal.lazy_indexer.DaskLazyIndexer attribute), [1]

 	DataSource (class in katdal.datasources)

 	DataSourceNotFound

 	dec (katdal.dataset.DataSet attribute)

 	decode_jwt() (in module katdal.chunkstore_s3)

 	description (katdal.dataset.DataSet attribute)

 	
 	DictChunkStore (class in katdal.chunkstore_dict)

 	dtype (katdal.categorical.CategoricalData attribute), [1]

 	(katdal.lazy_indexer.DaskLazyIndexer attribute)

 	(katdal.lazy_indexer.LazyIndexer attribute)

 	dummy_dataset() (in module katdal.h5datav2)

 	(in module katdal.h5datav3)

 	dummy_sensor_getter() (in module katdal.sensordata)

 	dump_period (katdal.dataset.DataSet attribute)

 	dumps (katdal.dataset.DataSet attribute)

E

 	
 	el (katdal.dataset.DataSet attribute)

 	end_time (katdal.dataset.DataSet attribute)

 	
 	excision (katdal.visdatav4.VisibilityDataV4 attribute)

 	experiment_id (katdal.dataset.DataSet attribute)

F

 	
 	file (katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	flags (katdal.concatdata.ConcatenatedDataSet attribute)

 	(katdal.dataset.DataSet attribute)

 	(katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	(katdal.visdatav4.VisibilityDataV4 attribute)

 	
 	from_url() (katdal.datasources.TelstateDataSource class method)

G

 	
 	generate_chunks() (in module katdal.chunkstore)

 	get() (katdal.concatdata.ConcatenatedSensorCache method)

 	(katdal.concatdata.ConcatenatedSensorGetter method)

 	(katdal.lazy_indexer.DaskLazyIndexer class method)

 	(katdal.sensordata.H5TelstateSensorGetter method)

 	(katdal.sensordata.RecordSensorGetter method)

 	(katdal.sensordata.SensorCache method)

 	(katdal.sensordata.SensorGetter method)

 	(katdal.sensordata.SimpleSensorGetter method)

 	(katdal.sensordata.TelstateSensorGetter method)

 	(katdal.sensordata.TelstateToStr method)

 	get_ants() (in module katdal)

 	get_cal_product() (in module katdal.applycal)

 	
 	get_chunk() (katdal.chunkstore.ChunkStore method)

 	(katdal.chunkstore_dict.DictChunkStore method)

 	(katdal.chunkstore_npy.NpyFileChunkStore method)

 	(katdal.chunkstore_s3.S3ChunkStore method)

 	get_chunk_or_default() (katdal.chunkstore.ChunkStore method)

 	get_chunk_or_placeholder() (katdal.chunkstore.ChunkStore method)

 	get_dask_array() (katdal.chunkstore.ChunkStore method)

 	get_indexed() (katdal.sensordata.TelstateToStr method)

 	get_message() (katdal.sensordata.TelstateToStr method)

 	get_range() (katdal.sensordata.TelstateToStr method)

 	get_sensor_from_katstore() (in module katdal.sensordata)

 	get_single_value() (in module katdal.h5datav2)

 	get_targets() (in module katdal)

 	get_with_fallback() (katdal.sensordata.SensorCache method)

H

 	
 	H5DataV1 (class in katdal.h5datav1)

 	H5DataV2 (class in katdal.h5datav2)

 	H5DataV3 (class in katdal.h5datav3)

 	H5TelstateSensorGetter (class in katdal.sensordata)

 	humidity (katdal.concatdata.ConcatenatedDataSet attribute)

 	(katdal.dataset.DataSet attribute)

 	(katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	(katdal.visdatav4.VisibilityDataV4 attribute)

I

 	
 	indices (katdal.categorical.CategoricalData attribute)

 	infer_chunk_store() (in module katdal.datasources)

 	infer_dtype() (in module katdal.categorical)

 	inputs (katdal.dataset.DataSet attribute)

 	(katdal.dataset.Subarray attribute)

 	
 	InvalidToken

 	InvalidTransform

 	is_complete() (katdal.chunkstore.ChunkStore method)

 	(katdal.chunkstore_npy.NpyFileChunkStore method)

 	(katdal.chunkstore_s3.S3ChunkStore method)

J

 	
 	join() (katdal.chunkstore.ChunkStore class method)

K

 	
 	katdal (module)

 	katdal.applycal (module)

 	katdal.averager (module)

 	katdal.categorical (module)

 	katdal.chunkstore (module)

 	katdal.chunkstore_dict (module)

 	katdal.chunkstore_npy (module)

 	katdal.chunkstore_s3 (module)

 	katdal.concatdata (module)

 	
 	katdal.dataset (module)

 	katdal.datasources (module)

 	katdal.flags (module)

 	katdal.h5datav1 (module)

 	katdal.h5datav2 (module)

 	katdal.h5datav3 (module)

 	katdal.lazy_indexer (module)

 	katdal.sensordata (module)

 	katdal.spectral_window (module)

 	katdal.visdatav4 (module)

L

 	
 	LazyIndexer (class in katdal.lazy_indexer)

 	
 	LazyTransform (class in katdal.lazy_indexer)

 	lst (katdal.dataset.DataSet attribute)

M

 	
 	mark_complete() (katdal.chunkstore.ChunkStore method)

 	(katdal.chunkstore_npy.NpyFileChunkStore method)

 	(katdal.chunkstore_s3.S3ChunkStore method)

 	
 	mjd (katdal.dataset.DataSet attribute)

N

 	
 	name (katdal.concatdata.ConcatenatedLazyIndexer attribute)

 	(katdal.lazy_indexer.DaskLazyIndexer attribute)

 	(katdal.lazy_indexer.LazyIndexer attribute)

 	
 	NAME_INDEX_WIDTH (katdal.chunkstore.ChunkStore attribute)

 	NAME_SEP (katdal.chunkstore.ChunkStore attribute)

 	npy_header_and_body() (in module katdal.chunkstore)

 	NpyFileChunkStore (class in katdal.chunkstore_npy)

O

 	
 	obs_params (katdal.dataset.DataSet attribute)

 	obs_script_log (katdal.dataset.DataSet attribute)

 	
 	observer (katdal.dataset.DataSet attribute)

 	open() (in module katdal)

 	open_data_source() (in module katdal.datasources)

P

 	
 	parangle (katdal.dataset.DataSet attribute)

 	parse_url_or_path() (in module katdal.dataset)

 	partition() (katdal.categorical.CategoricalData method)

 	PlaceholderChunk (class in katdal.chunkstore)

 	pressure (katdal.concatdata.ConcatenatedDataSet attribute)

 	(katdal.dataset.DataSet attribute)

 	(katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	(katdal.visdatav4.VisibilityDataV4 attribute)

 	
 	put_chunk() (katdal.chunkstore.ChunkStore method)

 	(katdal.chunkstore_dict.DictChunkStore method)

 	(katdal.chunkstore_npy.NpyFileChunkStore method)

 	(katdal.chunkstore_s3.S3ChunkStore method)

 	put_chunk_noraise() (katdal.chunkstore.ChunkStore method)

 	put_dask_array() (katdal.chunkstore.ChunkStore method)

R

 	
 	ra (katdal.dataset.DataSet attribute)

 	raw_flags (katdal.visdatav4.VisibilityDataV4 attribute)

 	read_array() (in module katdal.chunkstore_s3)

 	receivers (katdal.dataset.DataSet attribute)

 	rechannelise() (katdal.spectral_window.SpectralWindow method)

 	
 	RecordSensorGetter (class in katdal.sensordata)

 	remove() (katdal.categorical.CategoricalData method)

 	remove_duplicates_and_invalid_values() (in module katdal.sensordata)

 	remove_repeats() (katdal.categorical.CategoricalData method)

 	request() (katdal.chunkstore_s3.S3ChunkStore method)

 	root() (katdal.sensordata.TelstateToStr method)

S

 	
 	S3ChunkStore (class in katdal.chunkstore_s3)

 	S3ObjectNotFound

 	S3ServerGlitch

 	scan_indices (katdal.dataset.DataSet attribute)

 	scans() (katdal.dataset.DataSet method)

 	segments() (katdal.categorical.CategoricalData method)

 	select() (katdal.dataset.DataSet method)

 	sensor (katdal.dataset.DataSet attribute)

 	sensor_to_categorical() (in module katdal.categorical)

 	SensorCache (class in katdal.sensordata)

 	SensorData (class in katdal.sensordata)

 	SensorGetter (class in katdal.sensordata)

 	shape (katdal.dataset.DataSet attribute)

 	(katdal.lazy_indexer.DaskLazyIndexer attribute)

 	(katdal.lazy_indexer.LazyIndexer attribute)

 	
 	SimpleSensorGetter (class in katdal.sensordata)

 	size (katdal.dataset.DataSet attribute)

 	spectral_windows (katdal.dataset.DataSet attribute)

 	SpectralWindow (class in katdal.spectral_window)

 	split() (katdal.chunkstore.ChunkStore class method)

 	spw (katdal.dataset.DataSet attribute)

 	start_time (katdal.dataset.DataSet attribute)

 	StoreUnavailable

 	stream_name (katdal.h5datav3.H5DataV3 attribute)

 	Subarray (class in katdal.dataset)

 	subarray (katdal.dataset.DataSet attribute)

 	subarrays (katdal.dataset.DataSet attribute)

 	subrange() (katdal.spectral_window.SpectralWindow method)

T

 	
 	target_coordsys (katdal.dataset.DataSet attribute)

 	target_indices (katdal.dataset.DataSet attribute)

 	target_projection (katdal.dataset.DataSet attribute)

 	target_x (katdal.dataset.DataSet attribute)

 	target_y (katdal.dataset.DataSet attribute)

 	telstate_decode() (in module katdal.sensordata)

 	TelstateDataSource (class in katdal.datasources)

 	TelstateSensorGetter (class in katdal.sensordata)

 	TelstateToStr (class in katdal.sensordata)

 	temperature (katdal.concatdata.ConcatenatedDataSet attribute)

 	(katdal.dataset.DataSet attribute)

 	(katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	(katdal.visdatav4.VisibilityDataV4 attribute)

 	
 	timestamps (katdal.concatdata.ConcatenatedDataSet attribute)

 	(katdal.dataset.DataSet attribute)

 	(katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	(katdal.visdatav4.VisibilityDataV4 attribute)

 	to_str() (in module katdal.sensordata)

 	transforms (katdal.lazy_indexer.DaskLazyIndexer attribute)

U

 	
 	u (katdal.dataset.DataSet attribute)

 	unique_in_order() (in module katdal.categorical)

 	
 	unique_values (katdal.categorical.CategoricalData attribute)

 	unwrap() (katdal.categorical.ComparableArrayWrapper static method)

V

 	
 	v (katdal.dataset.DataSet attribute)

 	version (katdal.dataset.DataSet attribute)

 	view() (katdal.sensordata.TelstateToStr method)

 	view_capture_stream() (in module katdal.datasources)

 	view_l0_capture_stream() (in module katdal.datasources)

 	vis (katdal.concatdata.ConcatenatedDataSet attribute)

 	(katdal.dataset.DataSet attribute)

 	(katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	(katdal.visdatav4.VisibilityDataV4 attribute)

 	
 	VisibilityDataV4 (class in katdal.visdatav4)

W

 	
 	w (katdal.dataset.DataSet attribute)

 	weights (katdal.concatdata.ConcatenatedDataSet attribute)

 	(katdal.dataset.DataSet attribute)

 	(katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	(katdal.visdatav4.VisibilityDataV4 attribute)

 	wind_direction (katdal.concatdata.ConcatenatedDataSet attribute)

 	(katdal.dataset.DataSet attribute)

 	(katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	(katdal.visdatav4.VisibilityDataV4 attribute)

 	
 	wind_speed (katdal.concatdata.ConcatenatedDataSet attribute)

 	(katdal.dataset.DataSet attribute)

 	(katdal.h5datav1.H5DataV1 attribute)

 	(katdal.h5datav2.H5DataV2 attribute)

 	(katdal.h5datav3.H5DataV3 attribute)

 	(katdal.visdatav4.VisibilityDataV4 attribute)

 	wrapped (katdal.sensordata.TelstateToStr attribute)

 	WrongVersion

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to katdal’s documentation!

 		
 User guide

 		
 Introduction to katdal

 		
 Overview

 		
 Quick Tutorial

 		
 Tuning your application

 		
 Chunking

 		
 Joint loading

 		
 Parallelism

 		
 Selection

 		
 Network versus local disk

 		
 Benchmarking

 		
 Sign conventions

 		
 Visibilities

 		
 Baseline coordinates

 		
 Polarisation

 		
 Data set format reference

 		
 MVF version 1 (Fringe Finder)

 		
 The root ‘/’ group

 		
 /Antennas

 		
 /Antennas/Antenna%d

 		
 /Antennas/Antenna%d/H

 		
 /Antennas/Antenna%d/V

 		
 /Antennas/Antenna%d/Sensors

 		
 /Correlator

 		
 /Scans

 		
 /Scans/CompoundScan%d

 		
 CorrelatorConfig

 		
 Scan%d

 		
 MVF version 2 (KAT-7)

 		
 Introduction

 		
 Basic Concept

 		
 HDF5 Format

 		
 MVF version 3 (early MeerKAT)

 		
 MVF version 4 (MeerKAT)

 		
 Concepts

 		
 Metadata

 		
 Data

 		
 API reference

 		
 katdal package

 		
 Submodules

 		
 katdal.applycal module

 		
 katdal.averager module

 		
 katdal.categorical module

 		
 katdal.chunkstore module

 		
 katdal.chunkstore_dict module

 		
 katdal.chunkstore_npy module

 		
 katdal.chunkstore_s3 module

 		
 katdal.concatdata module

 		
 katdal.dataset module

 		
 katdal.datasources module

 		
 katdal.flags module

 		
 katdal.h5datav1 module

 		
 katdal.h5datav2 module

 		
 katdal.h5datav3 module

 		
 katdal.lazy_indexer module

 		
 katdal.ms_async module

 		
 katdal.ms_extra module

 		
 katdal.sensordata module

 		
 katdal.spectral_window module

 		
 katdal.visdatav4 module

 		
 Module contents

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

